RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2003, Volume 134, Number 3, Pages 353–373 (Mi tmf163)  

This article is cited in 3 scientific papers (total in 3 papers)

Two-Frequency Autowave Processes in the Complex Ginzburg–Landau Equation

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study the complex Ginzburg–Landau equation with zero Neumann boundary conditions on a finite interval and establish that this boundary problem (with suitably chosen parameters) has countably many stable two-dimensional self-similar tori. The case of periodic boundary conditions is also investigated.

Keywords: Ginzburg–Landau equation, autowave process, boundary problem, self-similar torus, quasiperiodic solution

DOI: https://doi.org/10.4213/tmf163

Full text: PDF file (292 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2003, 134:3, 308–325

Bibliographic databases:

Received: 27.03.2002

Citation: A. Yu. Kolesov, N. Kh. Rozov, “Two-Frequency Autowave Processes in the Complex Ginzburg–Landau Equation”, TMF, 134:3 (2003), 353–373; Theoret. and Math. Phys., 134:3 (2003), 308–325

Citation in format AMSBIB
\Bibitem{KolRoz03}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Two-Frequency Autowave Processes in the Complex Ginzburg--Landau Equation
\jour TMF
\yr 2003
\vol 134
\issue 3
\pages 353--373
\mathnet{http://mi.mathnet.ru/tmf163}
\crossref{https://doi.org/10.4213/tmf163}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2001813}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 134
\issue 3
\pages 308--325
\crossref{https://doi.org/10.1023/A:1022641203671}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000182047100002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf163
  • https://doi.org/10.4213/tmf163
  • http://mi.mathnet.ru/eng/tmf/v134/i3/p353

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kolesov AY, Rozov NK, “The buffer phenomenon in combustion theory”, Doklady Mathematics, 69:3 (2004), 469–472  mathscinet  isi
    2. Glyzin SD, Kolesov AY, Rozov NK, “Chaotic buffering property in chains of coupled oscillators”, Differential Equations, 41:1 (2005), 41–49  mathnet  mathnet  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Kolesov, AY, “Cylindrical traveling waves for the generalized cubical Schrodinger equation”, Doklady Mathematics, 73:1 (2006), 125  crossref  zmath  isi  elib  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:413
    Full text:100
    References:56
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019