|
This article is cited in 30 scientific papers (total in 30 papers)
Vector-matrix generalizations of classical integrable equations
S. I. Svinolupov, V. V. Sokolov Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Abstract:
Some vector-matrix generalizations, both known and new, for well-known integrable equations are presented. All of them possess higher symmetries and conservation laws.
Full text:
PDF file (439 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1994, 100:2, 959–962
Bibliographic databases:
Received: 23.04.1993
Citation:
S. I. Svinolupov, V. V. Sokolov, “Vector-matrix generalizations of classical integrable equations”, TMF, 100:2 (1994), 214–218; Theoret. and Math. Phys., 100:2 (1994), 959–962
Citation in format AMSBIB
\Bibitem{SviSok94}
\by S.~I.~Svinolupov, V.~V.~Sokolov
\paper Vector-matrix generalizations of classical integrable equations
\jour TMF
\yr 1994
\vol 100
\issue 2
\pages 214--218
\mathnet{http://mi.mathnet.ru/tmf1642}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1311194}
\zmath{https://zbmath.org/?q=an:0875.35121}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 100
\issue 2
\pages 959--962
\crossref{https://doi.org/10.1007/BF01016758}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994QH51400005}
Linking options:
http://mi.mathnet.ru/eng/tmf1642 http://mi.mathnet.ru/eng/tmf/v100/i2/p214
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. I. Svinolupov, V. V. Sokolov, “Deformations of triple Jordan systems and integrable equations”, Theoret. and Math. Phys., 108:3 (1996), 1160–1163
-
S. I. Svinolupov, I. T. Habibullin, “Integrable boundary conditions for many-component burgers equations”, Math. Notes, 60:6 (1996), 671–680
-
I. Z. Golubchik, V. V. Sokolov, “Integrable equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 112:3 (1997), 1097–1103
-
Olver, PJ, “Integrable evolution equations on associative algebras”, Communications in Mathematical Physics, 193:2 (1998), 245
-
I. Z. Golubchik, V. V. Sokolov, “Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 120:2 (1999), 1019–1025
-
I. Z. Golubchik, V. V. Sokolov, “Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation”, Theoret. and Math. Phys., 124:1 (2000), 909–917
-
Golubchik, IZ, “Generalized operator Yang–Baxter equations, integrable ODEs and nonassociative algebras”, Journal of Nonlinear Mathematical Physics, 7:2 (2000), 184
-
Sokolov, VV, “Classification of integrable polynomial vector evolution equations”, Journal of Physics A-Mathematical and General, 34:49 (2001), 11139
-
Meshkov, AG, “Integrable evolution equations on the N-dimensional sphere”, Communications in Mathematical Physics, 232:1 (2002), 1
-
D. K. Demskoi, A. G. Meshkov, “Lax Representation for a Triplet of Scalar Fields”, Theoret. and Math. Phys., 134:3 (2003), 351–364
-
Demskoi, DK, “Zero-curvature representation for a chiral-type three-field system”, Inverse Problems, 19:3 (2003), 563
-
A. G. Meshkov, V. V. Sokolov, “Classification of Integrable Divergent $N$-Component Evolution Systems”, Theoret. and Math. Phys., 139:2 (2004), 609–622
-
M. Yu. Balakhnev, “A class of integrable evolutionary vector equations”, Theoret. and Math. Phys., 142:1 (2005), 8–14
-
Tsuchida, T, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I”, Journal of Physics A-Mathematical and General, 38:35 (2005), 7691
-
A. G. Meshkov, “On symmetry classification of third order evolutionary systems of divergent type”, J. Math. Sci., 151:4 (2008), 3167–3181
-
M. Yu. Balakhnev, “Superposition Formulas for Vector Generalizations of the mKdV Equation”, Math. Notes, 82:4 (2007), 448–450
-
Sergyeyev, A, “Sasa-Satsuma (complex modified Korteweg-de Vries II) and the complex sine-Gordon II equation revisited: Recursion operators, nonlocal symmetries, and more”, Journal of Mathematical Physics, 48:4 (2007), 042702
-
M. Yu. Balakhnev, “Superposition formulas for integrable vector evolution equations”, Theoret. and Math. Phys., 154:2 (2008), 220–226
-
Balakhnev, MJ, “On a classification of integrable vectorial evolutionary equations”, Journal of Nonlinear Mathematical Physics, 15:2 (2008), 212
-
Adler, VE, “Classification of integrable Volterra-type lattices on the sphere: isotropic case”, Journal of Physics A-Mathematical and Theoretical, 41:14 (2008), 145201
-
V. M. Zhuravlev, “The method of generalized Cole–Hopf substitutions and new examples of linearizable nonlinear evolution equations”, Theoret. and Math. Phys., 158:1 (2009), 48–60
-
M. Yu. Balakhnev, A. G. Meshkov, “Integrable vector evolution equations admitting zeroth-order conserved densities”, Theoret. and Math. Phys., 164:2 (2010), 1002–1007
-
Gerdjikov V.S., Grahovski G.G., “Two Soliton Interactions of BD.I Multicomponent NLS Equations and Their Gauge Equivalent”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1301, 2010, 561–572
-
M. Yu. Balakhnev, “First-Order Differential Substitutions for Equations Integrable on $\mathbb S^n$”, Math. Notes, 89:2 (2011), 184–193
-
Gerdjikov V.S., “On Soliton Interactions of Vector Nonlinear Schrodinger Equations”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1404, 2011
-
Balakhnev M.J., “The Vector Ito-Drienfel'd-Sokolov System: Bilinear Backlund Transformation and Lax pair”, J Phys Soc Japan, 80:4 (2011), 045002
-
A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154
-
M. Yu. Balakhnev, “Differential Substitutions for Vectorial Generalizations of the mKdV Equation”, Math. Notes, 98:2 (2015), 204–209
-
Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold, “Bäcklund Transformations and Non-Abelian Nonlinear Evolution Equations: a Novel Bäcklund Chart”, SIGMA, 12 (2016), 087, 17 pp.
-
V. Fenchenko, E. Khruslov, “Nonlinear dynamics of solitons for the vector modified Korteweg–de Vries equation”, Zhurn. matem. fiz., anal., geom., 14:2 (2018), 153–168
|
Number of views: |
This page: | 429 | Full text: | 168 | References: | 19 | First page: | 1 |
|