RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2003, Volume 135, Number 1, Pages 82–94 (Mi tmf176)  

This article is cited in 4 scientific papers (total in 4 papers)

Wave Equations in Riemannian Spaces

K. S. Mamaevaa, N. N. Trunovb

a St. Petersburg State University of Economics and Finance
b D. I. Mendeleev Institute for Metrology

Abstract: With regard to applications in quantum theory, we consider the classical wave equation involving the scalar curvature with an arbitrary coefficient $\xi$. General properties of this equation and its solutions are studied based on modern results in group analysis with the aim to fix a physically justified value of $\xi$. These properties depend essentially not only on the values of $\xi$ and the mass parameter but also on the type and dimension of the space. Form invariance and conformal invariance must be distinguished in general. A class of Lorentz spaces in which the massless equation satisfies the Huygens principle and its Green's function is free of a logarithmic singularity exists only for the conformal value of $\xi$. The same value of $\xi$ follows from other arguments and the relation to the known WKB transformation method that we establish.

Keywords: wave equation, curved space-time, conformal invariance, conformal transformation, Huygens principle

DOI: https://doi.org/10.4213/tmf176

Full text: PDF file (252 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2003, 135:1, 520–530

Bibliographic databases:

Received: 31.01.2002
Revised: 13.05.2002

Citation: K. S. Mamaeva, N. N. Trunov, “Wave Equations in Riemannian Spaces”, TMF, 135:1 (2003), 82–94; Theoret. and Math. Phys., 135:1 (2003), 520–530

Citation in format AMSBIB
\Bibitem{MamTru03}
\by K.~S.~Mamaeva, N.~N.~Trunov
\paper Wave Equations in Riemannian Spaces
\jour TMF
\yr 2003
\vol 135
\issue 1
\pages 82--94
\mathnet{http://mi.mathnet.ru/tmf176}
\crossref{https://doi.org/10.4213/tmf176}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1997652}
\zmath{https://zbmath.org/?q=an:1178.58011}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 1
\pages 520--530
\crossref{https://doi.org/10.1023/A:1023235503054}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000183054500004}


Linking options:
  • http://mi.mathnet.ru/eng/tmf176
  • https://doi.org/10.4213/tmf176
  • http://mi.mathnet.ru/eng/tmf/v135/i1/p82

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. N. Trunov, “A Class of Potentials for Which Exact Semiclassical Quantization Can Be Achieved”, Theoret. and Math. Phys., 138:3 (2004), 407–417  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Yu. V. Pavlov, “Renormalization and Dimensional Regularization for a Scalar Field with Gauss–Bonnet-Type Coupling to Curvature”, Theoret. and Math. Phys., 140:2 (2004), 1095–1108  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Pavlov, YV, “Space-Time Description of Scalar Particle Creation by a Homogeneous Isotropic Gravitational Field”, Gravitation & Cosmology, 14:4 (2008), 314  crossref  mathscinet  zmath  adsnasa  isi
    4. Lobashev, AA, “A universal effective quantum number for centrally symmetric problems”, Journal of Physics A-Mathematical and Theoretical, 42:34 (2009), 345202  crossref  mathscinet  zmath  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:299
    Full text:108
    References:66
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019