RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2005, Volume 142, Number 2, Pages 265–283 (Mi tmf1780)  

This article is cited in 9 scientific papers (total in 9 papers)

Semiclassical geometry and integrability of the ads/cft correspondence

A. V. Marshakovab

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: We discuss the semiclassical geometry and integrable systems related to the gauge-string duality. We analyze semiclassical solutions of the Bethe ansatz equations arising in the context of the AdS/CFT correspondence, comparing them to stationary phase equations for the matrix integrals. We demonstrate how the underlying geometry is related to the integrable sigma models of the dual string theory and investigate some details of this correspondence.

Keywords: strings, matrix models, integrable systems, Bethe ansatz, supersymmetric Yang–Mills theory

DOI: https://doi.org/10.4213/tmf1780

Full text: PDF file (314 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2005, 142:2, 222–236

Bibliographic databases:


Citation: A. V. Marshakov, “Semiclassical geometry and integrability of the ads/cft correspondence”, TMF, 142:2 (2005), 265–283; Theoret. and Math. Phys., 142:2 (2005), 222–236

Citation in format AMSBIB
\Bibitem{Mar05}
\by A.~V.~Marshakov
\paper Semiclassical geometry and integrability of the ads/cft correspondence
\jour TMF
\yr 2005
\vol 142
\issue 2
\pages 265--283
\mathnet{http://mi.mathnet.ru/tmf1780}
\crossref{https://doi.org/10.4213/tmf1780}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2141777}
\zmath{https://zbmath.org/?q=an:1178.81111}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...142..222M}
\elib{http://elibrary.ru/item.asp?id=9135947}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 142
\issue 2
\pages 222--236
\crossref{https://doi.org/10.1007/s11232-005-0006-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000227756500006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1780
  • https://doi.org/10.4213/tmf1780
  • http://mi.mathnet.ru/eng/tmf/v142/i2/p265

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mikhailov, A, “Anomalous dimension and local charges”
    2. Mikhailov A., “Anomalous dimension and local charges”  isi
    3. L. O. Chekhov, A. V. Marshakov, A. D. Mironov, D. Vasiliev, “Complex Geometry of Matrix Models”, Proc. Steklov Inst. Math., 251 (2005), 254–292  mathnet  mathscinet  zmath
    4. Mann, N, “Bethe ansatz for a quantum supercoset sigma model”, Physical Review D, 72:8 (2005), 086002  crossref  mathscinet  adsnasa  isi  scopus  scopus
    5. A. V. Marshakov, “Matrix models, complex geometry, and integrable systems: I”, Theoret. and Math. Phys., 147:2 (2006), 583–636  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. V. Marshakov, “Matrix models, complex geometry, and integrable systems: II$^*$”, Theoret. and Math. Phys., 147:3 (2006), 777–820  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Dorey N., Vicedo B., “On the Dynamics of finite-gap solutions in classical string theory”, Journal of High Energy Physics, 2006, no. 7, 014  crossref  mathscinet  isi  scopus  scopus
    8. Berenstein D., Correa D.H., Vazquez S.E., “All loop BMN state energies from matrices”, Journal of High Energy Physics, 2006, no. 2, 048  crossref  mathscinet  isi  scopus  scopus
    9. Vicedo B., “The method of finite-gap integration in classical and semi-classical string theory”, J. Phys. A: Math. Theor., 44:12 (2011), 124002  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:350
    Full text:144
    References:63
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020