RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2003, Volume 135, Number 1, Pages 107–116 (Mi tmf179)  

This article is cited in 4 scientific papers (total in 4 papers)

Nonlinear Dynamics of a Two-Mode Wave Packet with Strong Linear Intermode

I. O. Zolotovskii, D. I. Sementsov

Ulyanovsk State University

Abstract: We investigate the dynamics of the wave packet formed by two codirected strongly interacting waves propagating in a medium with cubic nonlinearity. We obtain a soliton solution of the nonlinear Schrödinger equation in the degenerate case where the wave packet is described by a single partial momentum. In the nondegenerate case, we use the variational method to find the equation for the pulse duration, which turns out to be analogous to the equation for the coordinate in the Kepler problem. Solving it, we find the dependences of the pulse duration on the propagation distance in the cases of “finite” and “infinite” propagation regimes.

Keywords: wave packet, partial momentum, soliton solution, compression

DOI: https://doi.org/10.4213/tmf179

Full text: PDF file (209 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2003, 135:1, 541–548

Bibliographic databases:

Received: 13.12.2001
Revised: 17.04.2002

Citation: I. O. Zolotovskii, D. I. Sementsov, “Nonlinear Dynamics of a Two-Mode Wave Packet with Strong Linear Intermode”, TMF, 135:1 (2003), 107–116; Theoret. and Math. Phys., 135:1 (2003), 541–548

Citation in format AMSBIB
\Bibitem{ZolSem03}
\by I.~O.~Zolotovskii, D.~I.~Sementsov
\paper Nonlinear Dynamics of a Two-Mode Wave Packet with Strong Linear Intermode
\jour TMF
\yr 2003
\vol 135
\issue 1
\pages 107--116
\mathnet{http://mi.mathnet.ru/tmf179}
\crossref{https://doi.org/10.4213/tmf179}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1997653}
\zmath{https://zbmath.org/?q=an:1178.78015}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 1
\pages 541--548
\crossref{https://doi.org/10.1023/A:1023239603962}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000183054500006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf179
  • https://doi.org/10.4213/tmf179
  • http://mi.mathnet.ru/eng/tmf/v135/i1/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Adamova, MS, “Control of the pulse dynamics in a two-mode nonlinear optical guide with strong intermode coupling”, Journal of Communications Technology and Electronics, 52:5 (2007), 573  crossref  isi  scopus  scopus
    2. Zolotovskii, IO, “Optical radiation dynamics in optical fibers with nonlinear intermode coupling”, Optics and Spectroscopy, 107:1 (2009), 117  crossref  adsnasa  isi  scopus  scopus
    3. Adamova, MS, “Nonlinear dynamics of optical pulses in fibres with a travelling refractive-index-change wave”, Quantum Electronics, 39:3 (2009), 256  mathnet  crossref  adsnasa  isi  elib  scopus  scopus
    4. Adamova, MS, “Dynamics of optical radiation in an optical waveguide with a time- and length-modulated refractive index”, Journal of Communications Technology and Electronics, 54:2 (2009), 197  crossref  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:212
    Full text:94
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019