Teoreticheskaya i Matematicheskaya Fizika
General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2005, Volume 143, Number 2, Pages 278–304 (Mi tmf1815)  

This article is cited in 8 scientific papers (total in 8 papers)

Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

G. A. Alekseev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We show that for the fields depending on only two of the four space-time coordinates, the spaces of local solutions of various integrable reductions of Einstein's field equations are the subspaces of the spaces of local solutions of the “null-curvature” equations selected by universal (i.e., solution-independent conditions imposed on the canonical (Jordan) forms of the desired matrix variables. Each of these spaces of solutions can be parameterized by a finite set of holomorphic functions of the spectral parameter, which can be interpreted as a complete set of the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. We show that both the direct and inverse problems of such a map, i.e., the problem of finding the monodromy data for any local solution of the null-curvature equations for the given Jordan forms and also of proving the existence and uniqueness of such a solution for arbitrary monodromy data, can be solved unambiguously (the “monodromy transform”). We derive the linear singular integral equations solving the inverse problem and determine the explicit forms of the monodromy data corresponding to the spaces of solutions of Einstein's field equations.

Keywords: Einstein's equations, string gravity, integrability, singular integral equations, monodromy

DOI: https://doi.org/10.4213/tmf1815

Full text: PDF file (370 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2005, 143:2, 720–740

Bibliographic databases:

Received: 09.09.2004

Citation: G. A. Alekseev, “Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations”, TMF, 143:2 (2005), 278–304; Theoret. and Math. Phys., 143:2 (2005), 720–740

Citation in format AMSBIB
\by G.~A.~Alekseev
\paper Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations
\jour TMF
\yr 2005
\vol 143
\issue 2
\pages 278--304
\jour Theoret. and Math. Phys.
\yr 2005
\vol 143
\issue 2
\pages 720--740

Linking options:
  • http://mi.mathnet.ru/eng/tmf1815
  • https://doi.org/10.4213/tmf1815
  • http://mi.mathnet.ru/eng/tmf/v143/i2/p278

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Filippov, AT, “Integrable models of (1+1)-dimensional dilaton gravity coupled to scalar matter”, Theoretical and Mathematical Physics, 146:1 (2006), 95  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. V. De Alfaro, A. T. Filippov, “Dimensional reduction of gravity and relation between static states, cosmologies, and waves”, Theoret. and Math. Phys., 153:3 (2007), 1709–1731  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Gao, YJ, “Inverse scattering method and soliton double solution family for the general symplectic gravity model”, Journal of Mathematical Physics, 49:8 (2008), 083506  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. Alekseev G., Belinski V., “Einstein-Maxwell Solitons”, Cosmology and Gravitation, AIP Conference Proceedings, 1132, 2009, 333–385  crossref  adsnasa  isi  scopus  scopus
    5. V. de Alfaro, A. T. Filippov, “Multiexponential models of $(1+1)$-dimensional dilaton gravity and Toda–Liouville integrable models”, Theoret. and Math. Phys., 162:1 (2010), 34–56  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. A. T. Filippov, “Weyl–Eddington–Einstein affine gravity in the context of modern cosmology”, Theoret. and Math. Phys., 163:3 (2010), 753–767  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    7. Alekseev G.A., “Monodromy Transform and the Integral Equation Method for Solving the String Gravity and Supergravity Equations in Four and Higher Dimensions”, Phys. Rev. D, 88:2 (2013), 021503  crossref  adsnasa  isi  elib  scopus  scopus
    8. Fuchs A., Reisenberger M.P., “Integrable Structures and the Quantization of Free Null Initial Data For Gravity”, Class. Quantum Gravity, 34:18 (2017), 185003  crossref  mathscinet  zmath  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:522
    Full text:153
    First page:1

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021