RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2005, Volume 144, Number 2, Pages 410–422 (Mi tmf1866)  

This article is cited in 3 scientific papers (total in 3 papers)

Perturbative Analysis of Wave Interaction in Nonlinear Systems

A. Vekslera, Y. Zarmiab

a Ben-Gurion University of the Negev
b Jacob Blaustein Institute for Desert Research

Abstract: We propose a new way to handle obstacles to asymptotic integrability in perturbed nonlinear PDEs in the method of normal forms (NFs) in the case of multiwave solutions. Instead of including the whole obstacle in the NF, we include only its resonant part (if it exists) in the NF and assign the remainder to the homological equation. This leaves the NF integrable, and its solutions retain the character of the solutions of the unperturbed equation. We use the freedom in the expansion to construct canonical obstacles that are confined to the interaction region of the waves. For soliton solutions (e. g., of the KdV equation), the interaction region is a finite domain around the origin; the canonical obstacles then do not generate secular terms in the homological equation. When the interaction region is infinite (or semi-infinite, e.g., in wave-front solutions of the Burgers equation), the obstacles may contain resonant terms. The obstacles generate waves of a new type that cannot be written as functionals of the solutions of the NF. When the obstacle contributes a resonant term to the NF, this leads to a nonstandard update of the wave velocity.

Keywords: nonlinear evolution equations, wave interaction, obstacles to asymptotic integrability, perturbed KdV equation, perturbed Burgers equation

DOI: https://doi.org/10.4213/tmf1866

Full text: PDF file (314 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2005, 144:2, 1227–1237

Bibliographic databases:


Citation: A. Veksler, Y. Zarmi, “Perturbative Analysis of Wave Interaction in Nonlinear Systems”, TMF, 144:2 (2005), 410–422; Theoret. and Math. Phys., 144:2 (2005), 1227–1237

Citation in format AMSBIB
\Bibitem{VekZar05}
\by A.~Veksler, Y.~Zarmi
\paper Perturbative Analysis of Wave Interaction in Nonlinear Systems
\jour TMF
\yr 2005
\vol 144
\issue 2
\pages 410--422
\mathnet{http://mi.mathnet.ru/tmf1866}
\crossref{https://doi.org/10.4213/tmf1866}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2195014}
\zmath{https://zbmath.org/?q=an:1178.35338}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...144.1227V}
\elib{http://elibrary.ru/item.asp?id=17703450}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 144
\issue 2
\pages 1227--1237
\crossref{https://doi.org/10.1007/s11232-005-0154-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000232092900020}
\elib{http://elibrary.ru/item.asp?id=13857018}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1866
  • https://doi.org/10.4213/tmf1866
  • http://mi.mathnet.ru/eng/tmf/v144/i2/p410

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Veksler, A, “Wave interactions and the analysis of the perturbed Burgers equation”, Physica D-Nonlinear Phenomena, 211:1–2 (2005), 57  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    2. Veksler A, Zarmi Y, “Spontaneously generated waves in perturbed evolution equations”, Nonlinearity, 20:3 (2007), 523–536  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    3. Zarmi, Y, “Two-component description of dynamical systems that can be approximated by solitons: The case of the ion acoustic wave equations of plasma physics”, Physica D-Nonlinear Phenomena, 238:14 (2009), 1274  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:322
    Full text:99
    References:57
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019