RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2006, Volume 147, Number 3, Pages 470–478 (Mi tmf1988)  

This article is cited in 2 scientific papers (total in 2 papers)

A hierarchy of generalized invariants for linear partial differential operators

E. A. Kartashova

Johannes Kepler University Linz

Abstract: We study invariants of linear partial differential operators in two variables under gauge transformations. Using the Beals–Kartashova factorization, we construct a hierarchy of generalized invariants for operators of an arbitrary order. We study the properties of these invariants and give some examples. We also show that the classic Laplace invariants correspond to some particular cases of generalized invariants.

Keywords: linear partial differential operator, Beals–Kartashova factorization, generalized invariant, hierarchy of invariants

DOI: https://doi.org/10.4213/tmf1988

Full text: PDF file (353 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2006, 147:3, 839–846

Bibliographic databases:

Received: 23.09.2005
Revised: 25.11.2005

Citation: E. A. Kartashova, “A hierarchy of generalized invariants for linear partial differential operators”, TMF, 147:3 (2006), 470–478; Theoret. and Math. Phys., 147:3 (2006), 839–846

Citation in format AMSBIB
\Bibitem{Kar06}
\by E.~A.~Kartashova
\paper A hierarchy of generalized invariants for linear partial differential
operators
\jour TMF
\yr 2006
\vol 147
\issue 3
\pages 470--478
\mathnet{http://mi.mathnet.ru/tmf1988}
\crossref{https://doi.org/10.4213/tmf1988}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2254725}
\zmath{https://zbmath.org/?q=an:1177.35018}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..839K}
\elib{https://elibrary.ru/item.asp?id=9222058}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 3
\pages 839--846
\crossref{https://doi.org/10.1007/s11232-006-0079-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000239030100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745210573}


Linking options:
  • http://mi.mathnet.ru/eng/tmf1988
  • https://doi.org/10.4213/tmf1988
  • http://mi.mathnet.ru/eng/tmf/v147/i3/p470

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Athorne Ch. Yilmaz H., “Laplace Invariants for General Hyperbolic Systems”, J. Nonlinear Math. Phys., 19:3 (2012), 1250024  crossref  mathscinet  zmath  isi  elib  scopus
    2. Athorne Ch. Yilmaz H., “Invariants of Hyperbolic Partial Differential Operators”, J. Phys. A-Math. Theor., 49:13 (2016), 135201  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:263
    Full text:117
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020