RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ТМФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


ТМФ, 2006, том 146, номер 1, страницы 65–76 (Mi tmf2009)  

Эта публикация цитируется в 24 научных статьях (всего в 24 статьях)

Определитель Изергина–Корепина при кубическом корне из единицы

Ю. Г. Строганов

Институт физики высоких энергий

Аннотация: Рассматривается статистическая сумма для неоднородной шестивершинной модели, определенной на $(n\times n)$-квадратной решетке. Эта сумма зависит от $2n$ спектральных параметров $x_i$ и $y_i$, приписанных горизонтальным и вертикальным линиям, соответственно. В случае граничных условий типа доменной стенки она дается определителем Изергина–Корепина. При $q$, равном корню степени $N$ из единицы, эта статистическая сумма удовлетворяет специальному линейному функциональному уравнению, которое является особенно простым и полезным, когда кроссинг-параметр $\eta=2\pi/3$, т. е. когда $N=3$. Хорошо известно, что рассматриваемая статистическая сумма симметрична как по переменным $\{x\}$, так и по переменным $\{y\}$. С использованием вышеупомянутого уравнения найдено, что в случае $\eta=2\pi/3$ она симметрична в объединении $\{x\}\cup\{y\}$. Кроме того, это уравнение может быть использовано для решения некоторых проблем, относящихся к перечислению матриц чередующихся знаков. В частности, воспроизведено детальное перечисление матриц чередующихся знаков, открытое Миллсом, Роббинсом и Рамсеем и доказанное Цайлбергером, а также получены формулы для двойного детального перечисления этих матриц.

Ключевые слова: матрицы чередующихся знаков, перечисления, модель квадратного льда

DOI: https://doi.org/10.4213/tmf2009

Полный текст: PDF файл (172 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Theoretical and Mathematical Physics, 2006, 146:1, 53–62

Реферативные базы данных:


Образец цитирования: Ю. Г. Строганов, “Определитель Изергина–Корепина при кубическом корне из единицы”, ТМФ, 146:1 (2006), 65–76; Theoret. and Math. Phys., 146:1 (2006), 53–62

Цитирование в формате AMSBIB
\RBibitem{Str06}
\by Ю.~Г.~Строганов
\paper Определитель Изергина--Корепина при кубическом корне из единицы
\jour ТМФ
\yr 2006
\vol 146
\issue 1
\pages 65--76
\mathnet{http://mi.mathnet.ru/tmf2009}
\crossref{https://doi.org/10.4213/tmf2009}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2243403}
\zmath{https://zbmath.org/?q=an:1177.82042}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146...53S}
\elib{http://elibrary.ru/item.asp?id=9213636}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 1
\pages 53--62
\crossref{https://doi.org/10.1007/s11232-006-0006-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000235509200006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31044432338}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tmf2009
  • https://doi.org/10.4213/tmf2009
  • http://mi.mathnet.ru/rus/tmf/v146/i1/p65

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. В. Разумов, Ю. Г. Строганов, “Перечисление матриц чередующихся знаков нечетного порядка, симметричных относительно поворота на $180^\circ$”, ТМФ, 148:3 (2006), 357–386  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. V. Razumov, Yu. G. Stroganov, “Enumerations of half-turn-symmetric alternating-sign matrices of odd order”, Theoret. and Math. Phys., 148:3 (2006), 1174–1198  crossref  isi
    2. А. В. Разумов, Ю. Г. Строганов, “Перечисление матриц чередующихся знаков нечетного порядка, симметричных относительно поворота на $90^\circ $”, ТМФ, 149:3 (2006), 395–408  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. V. Razumov, Yu. G. Stroganov, “Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order”, Theoret. and Math. Phys., 149:3 (2006), 1639–1650  crossref  isi
    3. Razumov, AV, “Bethe roots and refined enumeration of alternating-sign matrices”, Journal of Statistical Mechanics-Theory and Experiment, 2006, P07004  crossref  mathscinet  isi  scopus
    4. Fonseca T, Zinn-Justin P, “On the doubly refined enumeration of alternating sign matrices and totally symmetric self-complementary plane partitions”, Electronic Journal of Combinatorics, 15:1 (2008), 81  mathscinet  zmath  isi
    5. А. В. Разумов, Ю. Г. Строганов, “Статистическая модель трех цветов с граничными условиями типа доменной стенки. Функциональные уравнения”, ТМФ, 161:1 (2009), 3–20  mathnet  crossref  mathscinet  zmath  adsnasa; A. V. Razumov, Yu. G. Stroganov, “Three-coloring statistical model with domain wall boundary conditions: Functional equations”, Theoret. and Math. Phys., 161:1 (2009), 1325–1339  crossref  isi
    6. А. В. Разумов, Ю. Г. Строганов, “Статистическая модель трех цветов с граничными условиями типа доменной стенки. Тригонометрический предел”, ТМФ, 161:2 (2009), 154–163  mathnet  crossref  mathscinet  zmath; A. V. Razumov, Yu. G. Stroganov, “Three-coloring statistical model with domain wall boundary conditions: Trigonometric limit”, Theoret. and Math. Phys., 161:2 (2009), 1451–1459  crossref  isi
    7. Ж.-К. Аваль, “О симметрии статистической суммы некоторых моделей квадратного льда”, ТМФ, 161:3 (2009), 309–317  mathnet  crossref  mathscinet  zmath  adsnasa; J.-Ch. Aval, “The symmetry of the partition function of some square ice models”, Theoret. and Math. Phys., 161:3 (2009), 1582–1589  crossref  isi
    8. Fischer, I, “More refined enumerations of alternating sign matrices”, Advances in Mathematics, 222:6 (2009), 2004  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Galleas W., “Functional relations for the six-vertex model with domain wall boundary conditions”, J. Stat. Mech. Theory Exp., 2010, P06008  crossref  isi  elib  scopus  scopus
    10. Karklinsky M., Romik D., “A formula for a doubly refined enumeration of alternating sign matrices”, Adv. in Appl. Math., 45:1 (2010), 28–35  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Rosengren H., “The three-colour model with domain wall boundary conditions”, Adv in Appl Math, 46:1–4 (2011), 481–535  crossref  mathscinet  zmath  isi  scopus  scopus
    12. Cantini L., Sportiello A., “Proof of the Razumov-Stroganov conjecture”, J Combin Theory Ser A, 118:5 (2011), 1549–1574  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Galleas W., “A new representation for the partition function of the six-vertex model with domain wall boundaries”, J. Stat. Mech. Theory Exp., 2011, no. 1, P01013, 12 pp.  crossref  mathscinet  isi  elib  scopus  scopus
    14. Brubaker B., Bump D., Friedberg S., “Schur Polynomials and The Yang–Baxter Equation”, Comm Math Phys, 308:2 (2011), 281–301  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. Behrend R.E. Di Francesco Ph. Zinn-Justin P., “A Doubly-Refined Enumeration of Alternating Sign Matrices and Descending Plane Partitions”, J. Comb. Theory Ser. A, 120:2 (2013), 409–432  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    16. Behrend R.E., “Multiply-Refined Enumeration of Alternating Sign Matrices”, Adv. Math., 245 (2013), 439–499  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Ayyer A. Romik D., “New Enumeration Formulas for Alternating Sign Matrices and Square Ice Partition Functions”, Adv. Math., 235 (2013), 161–186  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    18. Romik D., “Connectivity Patterns in Loop Percolation i: the Rationality Phenomenon and Constant Term Identities”, Commun. Math. Phys., 330:2 (2014), 499–538  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    19. Rosengren H., “Special Polynomials Related To the Supersymmetric Eight-Vertex Model: a Summary”, Commun. Math. Phys., 340:3 (2015), 1143–1170  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    20. Gorin V. Panova G., “Asymptotics of Symmetric Polynomials With Applications To Statistical Mechanics and Representation Theory”, Ann. Probab., 43:6 (2015), 3052–3132  crossref  mathscinet  zmath  isi  scopus  scopus
    21. Rosengren H., “Elliptic Pfaffians and solvable lattice models”, J. Stat. Mech.-Theory Exp., 2016, 083106  crossref  mathscinet  isi  elib  scopus
    22. de Gier J. Jacobsen J.L. Ponsaing A., “Finite-Size Corrections For Universal Boundary Entropy in Bond Percolation”, SciPost Phys., 1:2 (2016), UNSP 012  crossref  isi
    23. Behrend R.E. Fischer I. Konvalinka M., “Diagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order”, Adv. Math., 315 (2017), 324–365  crossref  mathscinet  zmath  isi  scopus  scopus
    24. Ayyer A. Behrend R.E., “Factorization Theorems For Classical Group Characters, With Applications to Alternating Sign Matrices and Plane Partitions”, J. Comb. Theory Ser. A, 165 (2019), 78–105  crossref  mathscinet  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Просмотров:
    Эта страница:648
    Полный текст:103
    Литература:52
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019