RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2006, Volume 147, Number 1, Pages 92–102 (Mi tmf2025)  

Resonances and tunneling in a quantum wire

A. A. Arsen'ev

M. V. Lomonosov Moscow State University, Faculty of Physics

Abstract: We consider a problem in mathematical scattering theory related to the ballistic conductance model. The model under investigation describes the charge propagation in a quantum wire. We assume that the charge carrier has a spin and take the Rashba spin-orbital interaction into account. We study the conductance resonances generated by the weak quantum-wire interaction with the quasistationary state of a parallel-connected quantum dot or with the tunneling through a series-connected quantum dot. Such a quantum dot is usually the control element. We present sufficient conditions for the spatial symmetry of the system to ensure that the quasistationary state of the quantum dot generates a conductance resonance. We assume that the conductance is related to the scattering matrix by the Landauer formula.

Keywords: resonance, quantum wire, ballistic conductance

DOI: https://doi.org/10.4213/tmf2025

Full text: PDF file (174 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2006, 147:1, 524–532

Bibliographic databases:

Received: 19.09.2005
Revised: 31.10.2005

Citation: A. A. Arsen'ev, “Resonances and tunneling in a quantum wire”, TMF, 147:1 (2006), 92–102; Theoret. and Math. Phys., 147:1 (2006), 524–532

Citation in format AMSBIB
\Bibitem{Ars06}
\by A.~A.~Arsen'ev
\paper Resonances and tunneling in a~quantum wire
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 92--102
\mathnet{http://mi.mathnet.ru/tmf2025}
\crossref{https://doi.org/10.4213/tmf2025}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2254718}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..524A}
\elib{http://elibrary.ru/item.asp?id=9200335}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 524--532
\crossref{https://doi.org/10.1007/s11232-006-0059-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000237757900007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646005507}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2025
  • https://doi.org/10.4213/tmf2025
  • http://mi.mathnet.ru/eng/tmf/v147/i1/p92

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:696
    Full text:184
    References:46
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018