Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2006, Volume 146, Number 2, Pages 340–352 (Mi tmf2039)  

This article is cited in 1 scientific paper (total in 1 paper)

General Theory of Acoustic Wave Propagation in Liquids and Gases

G. A. Martynov

Institute of Physical Chemistry, Russian Academy of Sciences

Abstract: We study the propagation of small-amplitude acoustic waves in liquids and gases and use the hydrodynamic equations to obtain an exact dispersion equation. This equation in dimensionless variables contains only two material constants $p$ and $q$. We solve the dispersion equation, obtaining an exact solution that holds for all values of the parameters and all frequencies up to hypersonic, and thus analytically establish exactly how the speed of sound $c$, the wave vector $k$, and the damping factor $x$ depend on the frequency $\omega$ and the dimensionless material constants $p$ and $q$. Studying the behavior of the solution in the sonic and ultrasonic frequency bands for $\omega<10^7$ с$^{-1}$ results in an expression for the damping factor, which differs from the Kirchhoff formula. The speed of sound $c$ and the wave vector $k$ are shown to have finite nonzero values for all hypersonic frequencies. At the same time, there exists a certain maximum frequency value, $\omega_{\max}\approx10^{11}$$10^{12}$ с$^{-1}$, at which the damping factor $x$ is zero. This frequency determines the boundary of the applicability domain for the hydrodynamic equations.

Keywords: hydrodynamics, sound, dispersion equation, relaxation theory

DOI: https://doi.org/10.4213/tmf2039

Full text: PDF file (178 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2006, 146:2, 285–294

Bibliographic databases:

Received: 17.01.2005
Revised: 18.04.2005

Citation: G. A. Martynov, “General Theory of Acoustic Wave Propagation in Liquids and Gases”, TMF, 146:2 (2006), 340–352; Theoret. and Math. Phys., 146:2 (2006), 285–294

Citation in format AMSBIB
\Bibitem{Mar06}
\by G.~A.~Martynov
\paper General Theory of Acoustic Wave Propagation in Liquids and Gases
\jour TMF
\yr 2006
\vol 146
\issue 2
\pages 340--352
\mathnet{http://mi.mathnet.ru/tmf2039}
\crossref{https://doi.org/10.4213/tmf2039}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2243134}
\zmath{https://zbmath.org/?q=an:1177.76377}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..285M}
\elib{https://elibrary.ru/item.asp?id=9213654}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 2
\pages 285--294
\crossref{https://doi.org/10.1007/s11232-006-0024-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000236080100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-32544459405}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2039
  • https://doi.org/10.4213/tmf2039
  • http://mi.mathnet.ru/eng/tmf/v146/i2/p340

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Li Zh., Han Zh., Jian X., Shao W., Jiao Ya., Cui Ya., “Pulse-Echo Acoustic Properties Evaluation Method Using High-Frequency Transducer”, Meas. Sci. Technol., 31:12 (2020), 125011  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:1600
    Full text:549
    References:81
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021