RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2006, Volume 146, Number 3, Pages 429–442 (Mi tmf2045)  

This article is cited in 5 scientific papers (total in 5 papers)

Electron in a multilayered magnetic structure: resonance asymptotics

I. Yu. Popov, E. S. Tesovskaya

St. Petersburg State University of Information Technologies, Mechanics and Optics

Abstract: We consider the Neumann Laplacian for two-dimensional weakly coupled strips and obtain asymptotic formulas for a quasieigenvalue close to the threshold. We study the scattering problem in the framework of the asymptotic approach and discuss possible applications of the results.

Keywords: waveguide, spectrum, scattering, resonance

DOI: https://doi.org/10.4213/tmf2045

Full text: PDF file (206 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2006, 146:3, 361–372

Bibliographic databases:

Received: 02.11.2005
Revised: 16.09.2005

Citation: I. Yu. Popov, E. S. Tesovskaya, “Electron in a multilayered magnetic structure: resonance asymptotics”, TMF, 146:3 (2006), 429–442; Theoret. and Math. Phys., 146:3 (2006), 361–372

Citation in format AMSBIB
\Bibitem{PopTes06}
\by I.~Yu.~Popov, E.~S.~Tesovskaya
\paper Electron in a~multilayered magnetic structure: resonance asymptotics
\jour TMF
\yr 2006
\vol 146
\issue 3
\pages 429--442
\mathnet{http://mi.mathnet.ru/tmf2045}
\crossref{https://doi.org/10.4213/tmf2045}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2254668}
\zmath{https://zbmath.org/?q=an:1177.81152}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..361P}
\elib{http://elibrary.ru/item.asp?id=9200321}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 3
\pages 361--372
\crossref{https://doi.org/10.1007/s11232-006-0045-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000236533100006}
\elib{http://elibrary.ru/item.asp?id=13522980}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644924609}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2045
  • https://doi.org/10.4213/tmf2045
  • http://mi.mathnet.ru/eng/tmf/v146/i3/p429

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gortinskaya L.V., Kurasov A.E., Malina N.A., Popov I.Yu., Tesovskaya E.S., Levin S.B., “Many particles problems for quantum layers”, Proceedings of the International Conference Days on Diffraction 2006, 2006, 218–224  crossref  isi  scopus  scopus
    2. Olendski O, Mikhailovska L, “Analytical and numerical study of a curved planar waveguide with combined Dirichlet and Neumann boundary conditions in a uniform magnetic field”, Physical Review B, 77:17 (2008), 174405  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    3. Trifanova, ES, “Resonance phenomena in curved quantum waveguides coupled via windows”, Technical Physics Letters, 35:2 (2009), 180  crossref  adsnasa  isi  elib  scopus  scopus
    4. Olendski O., Mikhailovska L., “Theory of a curved planar waveguide with Robin boundary conditions”, Phys. Rev. E, 81:3 (2010), 036606, 14 pp.  crossref  adsnasa  isi  elib  scopus  scopus
    5. Najar H., Olendski O., “Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs”, J. Phys. A: Math. Theor., 44:30 (2011), 305304  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:263
    Full text:119
    References:44
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019