RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1982, Volume 50, Number 2, Pages 261–271 (Mi tmf2108)  

This article is cited in 10 scientific papers (total in 10 papers)

Two-time thermal Green's functions for commuting dynamical variables

Yu. A. Tserkovnikov


Abstract: Equations are obtained for the two-time commutator Green's functions that apply directly in the case of dynamical variables described by commuting operators such as the particle number density, energy density, etc., and also in the case of operators whose averaged commutators may vanish. For the commutator Green' s function describing the fluctuations of the particle number density a closed nonlinear equation is obtained which is valid in both the hydrodynamic region and the weak interaction limit.

Full text: PDF file (1390 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1982, 50:2, 171–177

Bibliographic databases:

Document Type: Article
Received: 16.10.1980

Citation: Yu. A. Tserkovnikov, “Two-time thermal Green's functions for commuting dynamical variables”, TMF, 50:2 (1982), 261–271; Theoret. and Math. Phys., 50:2 (1982), 171–177

Citation in format AMSBIB
\Bibitem{Tse82}
\by Yu.~A.~Tserkovnikov
\paper Two-time thermal Green's functions for commuting dynamical variables
\jour TMF
\yr 1982
\vol 50
\issue 2
\pages 261--271
\mathnet{http://mi.mathnet.ru/tmf2108}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=662042}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 50
\issue 2
\pages 171--177
\crossref{https://doi.org/10.1007/BF01015298}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982PH72200008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2108
  • http://mi.mathnet.ru/eng/tmf/v50/i2/p261

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Tserkovnikov, “Correlation functions of a Heisenberg ferromagnet in the paramagnetic region”, Theoret. and Math. Phys., 52:1 (1982), 712–721  mathnet  crossref  isi
    2. Yu. A. Tserkovnikov, “Method of two-time Green's functions in molecular hydrodynamics”, Theoret. and Math. Phys., 63:3 (1985), 619–630  mathnet  crossref  mathscinet  isi
    3. V. L. Aksenov, M. Bobet, N. M. Plakida, “Nonergodic behavior in the Ising model with transverse field”, Theoret. and Math. Phys., 76:1 (1988), 696–703  mathnet  crossref  mathscinet  isi
    4. G. O. Balabanyan, “Construction of classical systems of equations and macroscopic asymptotics for the equilibium correlation and Green's functions by means of the nonequilibrium statistical operator method”, Theoret. and Math. Phys., 80:1 (1989), 753–766  mathnet  crossref  mathscinet  isi
    5. Jackeli, G, “Charge dynamics and optical conductivity of the t-J model”, Physical Review B, 60:8 (1999), 5266  crossref  isi
    6. V. Yu. Irkhin, “The method of two-time Green's functions in the magnetism theory of metals with strong correlations”, Theoret. and Math. Phys., 168:3 (2011), 1246–1257  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    7. Yu. G. Rudoy, “The Bogoliubov–Tyablikov Green's function method in the quantum theory of magnetism”, Theoret. and Math. Phys., 168:3 (2011), 1318–1329  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    8. Ochoa M.A. Galperin M. Ratner M.A., “A Non-Equilibrium Equation-of-Motion Approach To Quantum Transport Utilizing Projection Operators”, J. Phys.-Condes. Matter, 26:45 (2014), 455301  crossref  isi
    9. Das N., Bhalla P., Singh N., “Memory function approach to correlated electron transport: A comprehensive review”, Int. J. Mod. Phys. B, 30:23 (2016), 1630015  crossref  mathscinet  zmath  isi  elib  scopus
    10. Nguen Dan Tung, Plakida N., “Charge Dynamics in Strongly-Correlated Electronic Systems”, Int. J. Mod. Phys. B, 32:29 (2018), 1850327  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:221
    Full text:119
    References:27
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019