RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1983, Volume 54, Number 3, Pages 381–387 (Mi tmf2129)  

This article is cited in 5 scientific papers (total in 5 papers)

Gauge theory for the Poincaré group

M. O. Katanaev


Abstract: The method of constructing Lagrangians proposed by Cho [1] is generalized to the case of the Poincaré group. For this purpose, a nondegenerate right-invariant Riemannian metric is constructed for the Poincar6 group; this metric is leftinvariant with respect to the direct product of the Lorentz group and the subgroup of displacements. In a left-invariant basis, the metric depends nontrivially on the coordinates of the displacement subgroup, which leads to the appearance in the theory of a vector field. Using this vector field and gauge fields, one can introduce a tetrad field on the space-time manifold. After the Lorentz connection has been made compatible with the linear connection, the Lagrangian of the gauge fields of the Poincaré group reduces to a sum of invariants constructed from the curvature and torsion tensors plus a cosmological term. In the large-scale limit, the equations of motion become identical to Einstein's free equations.

Full text: PDF file (482 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1983, 54:3, 248–252

Bibliographic databases:

Document Type: Article
Received: 15.06.1982

Citation: M. O. Katanaev, “Gauge theory for the Poincaré group”, TMF, 54:3 (1983), 381–387; Theoret. and Math. Phys., 54:3 (1983), 248–252

Citation in format AMSBIB
\Bibitem{Kat83}
\by M.~O.~Katanaev
\paper Gauge theory for the Poincar\'e group
\jour TMF
\yr 1983
\vol 54
\issue 3
\pages 381--387
\mathnet{http://mi.mathnet.ru/tmf2129}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=708248}
\zmath{https://zbmath.org/?q=an:0514.53019|0526.53022}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 54
\issue 3
\pages 248--252
\crossref{https://doi.org/10.1007/BF01018904}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983RP15400006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2129
  • http://mi.mathnet.ru/eng/tmf/v54/i3/p381

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. O. Katanaev, “Linear connection in theories of Kaluza–Klein type”, Theoret. and Math. Phys., 56:2 (1983), 795–798  mathnet  crossref  mathscinet  zmath  isi
    2. M. O. Katanaev, “Kinetic term for the Lorentz connection”, Theoret. and Math. Phys., 65:1 (1985), 1043–1050  mathnet  crossref  mathscinet  zmath  isi
    3. M. O. Katanaev, “Kinetic part of dynamical torsion theory”, Theoret. and Math. Phys., 72:1 (1987), 735–741  mathnet  crossref  zmath  isi
    4. Yu. N. Obukhov, I. V. Yakushin, “Experimental bounds on parameters of spin-spin interaction in gauge theory of gravitation”, Theoret. and Math. Phys., 90:2 (1992), 209–213  mathnet  crossref  zmath  isi
    5. M. O. Katanaev, “Wedge Dislocation in the Geometric Theory of Defects”, Theoret. and Math. Phys., 135:2 (2003), 733–744  mathnet  crossref  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:255
    Full text:87
    References:26
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019