RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1983, Volume 56, Number 1, Pages 15–30 (Mi tmf2186)  

This article is cited in 7 scientific papers (total in 7 papers)

The $CP^{N-1}$ model: Calculation of anomalous dimensions and the mixing matrices in the order $1/N$

A. N. Vasil'ev, M. Yu. Nalimov

Leningrad State University

Abstract: In the first order in $1/N$ for arbitrary dimension $2<d<4$ of space for the $CP^{N-1}$ model quantized by means of the auxiliary fields $\varphi$ and $B$ ($\Phi$ is the principal field, go the auxiliary scalar field, and $B$ the auxiliary vector field) the following are calculated: 1) the matrix of renormalization constants and the corresponding matrix of the anomalous dimensions of the mixed operators $\varphi$ and $B^2$ of canonical dimension $2$; 2) the analogous matrices for the mixed operators $\varphi^2$ and $F_{\alpha\beta}F_{\alpha\beta}$ of canonical dimension $4$, which determine two correction exponents $\omega$; 3) the anomalous dimension $\gamma_\Phi$ in an arbitrary gauge.

Full text: PDF file (982 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1983, 56:1, 643–653

Bibliographic databases:

Received: 08.07.1982

Citation: A. N. Vasil'ev, M. Yu. Nalimov, “The $CP^{N-1}$ model: Calculation of anomalous dimensions and the mixing matrices in the order $1/N$”, TMF, 56:1 (1983), 15–30; Theoret. and Math. Phys., 56:1 (1983), 643–653

Citation in format AMSBIB
\Bibitem{VasNal83}
\by A.~N.~Vasil'ev, M.~Yu.~Nalimov
\paper The~$CP^{N-1}$ model: Calculation of anomalous dimensions and the mixing matrices in the order~$1/N$
\jour TMF
\yr 1983
\vol 56
\issue 1
\pages 15--30
\mathnet{http://mi.mathnet.ru/tmf2186}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 1
\pages 643--653
\crossref{https://doi.org/10.1007/BF01027537}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983SA59100002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2186
  • http://mi.mathnet.ru/eng/tmf/v56/i1/p15

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Vasil'ev, M. Yu. Nalimov, Yu. R. Khonkonen, “$1/N$ expansion: Calculation of anomalous dimensions and mixing matrices in the order $1/N$ for $N\times p$ matrix gauge-invariant $\sigma$-model”, Theoret. and Math. Phys., 58:2 (1984), 111–120  mathnet  crossref  isi
    2. A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', A. S. Stepanenko, “Proof of conformal invariance in the critical regime for models of Gross–Neveu type”, Theoret. and Math. Phys., 92:3 (1992), 1047–1054  mathnet  crossref  mathscinet  isi
    3. A. N. Vasil'ev, A. S. Stepanenko, “A method of calculating the critical dimensions of composite operators in the massless nonlinear $\sigma$ model”, Theoret. and Math. Phys., 95:1 (1993), 471–481  mathnet  crossref  zmath
    4. S. È. Derkachev, A. N. Manashov, “Critical dimensions of composite operators in the nonlinear $\sigma$-model”, Theoret. and Math. Phys., 116:3 (1998), 1034–1049  mathnet  crossref  crossref  mathscinet  isi
    5. Ciuchini, M, “Quark mass anomalous dimension at O(1/N-f(2)) in QCD”, Physics Letters B, 458:1 (1999), 117  crossref  isi
    6. Ciuchini, M, “Computation of quark mass anomalous dimension at O(1/N-f(2)) in quantum chromodynamics”, Nuclear Physics B, 579:1–2 (2000), 56  crossref  isi
    7. Gracey J.A., “Large N-F Quantum Field Theory”, Int. J. Mod. Phys. A, 33:35 (2018), 1830032  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:265
    Full text:114
    References:22
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020