RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1983, Volume 56, Number 2, Pages 260–271 (Mi tmf2210)  

This article is cited in 3 scientific papers (total in 3 papers)

Excitation spectrum of the anisotropic generalization of an $SU_3$ magnet

V. I. Vichirko, N. Yu. Reshetikhin


Abstract: The spectrum of an exactly solvable quantum-mechanical system on a chain with three-dimensional state space at a site is investigated. The system is related to the solution of the Yang–Baxter equations found by tzergin and Korepin. A new analytic method is used to find the eigenvatues of the generating function of the quantum integrals of the motion of the system. The thermodynamic limit over the antiferromagnetie ground state is considered.

Full text: PDF file (584 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1983, 56:2, 805–812

Bibliographic databases:

Received: 18.10.1982

Citation: V. I. Vichirko, N. Yu. Reshetikhin, “Excitation spectrum of the anisotropic generalization of an $SU_3$ magnet”, TMF, 56:2 (1983), 260–271; Theoret. and Math. Phys., 56:2 (1983), 805–812

Citation in format AMSBIB
\Bibitem{VicRes83}
\by V.~I.~Vichirko, N.~Yu.~Reshetikhin
\paper Excitation spectrum of the anisotropic generalization of an $SU_3$~magnet
\jour TMF
\yr 1983
\vol 56
\issue 2
\pages 260--271
\mathnet{http://mi.mathnet.ru/tmf2210}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=718103}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 2
\pages 805--812
\crossref{https://doi.org/10.1007/BF01016823}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983SG66600010}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2210
  • http://mi.mathnet.ru/eng/tmf/v56/i2/p260

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. O. Tarasov, “Algebraic bethe ansatz for the Izergin–Korepin $R$ matrix”, Theoret. and Math. Phys., 76:2 (1988), 793–803  mathnet  crossref  mathscinet  isi
    2. Nicolas Crampé, Eric Ragoucy, Ludovic Alonzi, “Coordinate Bethe Ansatz for Spin $s$ XXX Model”, SIGMA, 7 (2011), 006, 13 pp.  mathnet  crossref  mathscinet
    3. Ahmed I. Nepomechie R.I. Wang Ch., “Quantum Group Symmetries and Completeness For a(2N)((2)) Open Spin Chains”, J. Phys. A-Math. Theor., 50:28 (2017), 284002  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:207
    Full text:68
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019