RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1983, Volume 57, Number 2, Pages 238–248 (Mi tmf2257)  

This article is cited in 1 scientific paper (total in 1 paper)

Explicit solutions of $O(3)$ and $O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions

M. G. Tseitlin


Abstract: By means of elliptic solutions of the $O(3)$ and $O(2,1)$ $\sigma$ models parametrized by arbitrary holomorphie functions (generalization of a singular harmonic mapping) and the previously considered [1] correspondence between chiral models and systems with exponential interaction, elliptic solutions are obtained for one of the two-dimensional Toda chains corresponding to the Kac–Moody algebra parametrized by a holomorphie or an antiholomorphic function. Solutions of the sinh-Gordon equation are given. For the Ernst equation, a solution is generated by the meron sector of the $O(2,1)$ $\sigma$ model which is parametrized by two real functions (cylindrical waves) or a holomorphic function (stationary axisymmetric solutions). A solution of Liouville's equation on a torus is given.

Full text: PDF file (561 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1983, 57:2, 1110–1117

Bibliographic databases:

Received: 04.04.1983

Citation: M. G. Tseitlin, “Explicit solutions of $O(3)$ and $O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions”, TMF, 57:2 (1983), 238–248; Theoret. and Math. Phys., 57:2 (1983), 1110–1117

Citation in format AMSBIB
\Bibitem{Tse83}
\by M.~G.~Tseitlin
\paper Explicit solutions of~$O(3)$ and~$O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions
\jour TMF
\yr 1983
\vol 57
\issue 2
\pages 238--248
\mathnet{http://mi.mathnet.ru/tmf2257}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=734886}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 2
\pages 1110--1117
\crossref{https://doi.org/10.1007/BF01018654}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983SX71000007}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2257
  • http://mi.mathnet.ru/eng/tmf/v57/i2/p238

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. G. Tseitlin, “Solutions of two-dimensional einstein equations parametrized by arbitrary functions and generated by the O(2, 1) $\sigma$ model”, Theoret. and Math. Phys., 64:1 (1985), 679–686  mathnet  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:129
    Full text:52
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019