RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1982, Volume 50, Number 3, Pages 333–343 (Mi tmf2288)  

This article is cited in 14 scientific papers (total in 14 papers)

Formulation of gauge theories of general form. I

B. L. Voronov, I. V. Tyutin


Abstract: The general solution of the Zinn-Justin equation is described and it is shown that the $S$-matrix does not depend on the choice of the concrete solution.

Full text: PDF file (1654 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1982, 50:3, 218–225

Bibliographic databases:

Received: 06.01.1981

Citation: B. L. Voronov, I. V. Tyutin, “Formulation of gauge theories of general form. I”, TMF, 50:3 (1982), 333–343; Theoret. and Math. Phys., 50:3 (1982), 218–225

Citation in format AMSBIB
\Bibitem{VorTyu82}
\by B.~L.~Voronov, I.~V.~Tyutin
\paper Formulation of gauge theories of general form.~I
\jour TMF
\yr 1982
\vol 50
\issue 3
\pages 333--343
\mathnet{http://mi.mathnet.ru/tmf2288}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=662209}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 50
\issue 3
\pages 218--225
\crossref{https://doi.org/10.1007/BF01016448}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982PK24500002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2288
  • http://mi.mathnet.ru/eng/tmf/v50/i3/p333

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. B. L. Voronov, I. V. Tyutin, “Formulation of gauge theories of general form. II. Gauge-invariant renormalizability and renormalization structure”, Theoret. and Math. Phys., 52:1 (1982), 628–637  mathnet  crossref  mathscinet  isi
    2. R. P. Grigoryan, I. V. Tyutin, “Symmetry properties of renormalized theories”, Theoret. and Math. Phys., 64:3 (1985), 915–922  mathnet  crossref  mathscinet  isi
    3. V. P. Spiridonov, “Analysis of extended Slavnov–Taylor identities in the $\alpha$ gauge”, Theoret. and Math. Phys., 79:2 (1989), 600–606  mathnet  crossref  isi
    4. Henneaux, M, “Local BRST cohomology of the gauged principal nonlinear sigma model”, Physical Review D, 5802:2 (1998), 025017
    5. Henneaux M., Wilch A., “Local BRST cohomology of the gauged principal nonlinear sigma model”, Physical Review D, 58:2 (1998), 025017  crossref  isi
    6. Geyer, B, “Modified triplectic quantization in general coordinates”, International Journal of Modern Physics A, 19:10 (2004), 1639  crossref  isi
    7. Batalin, IA, “On generalized gauge fixing in the field-antifield formalism”, Nuclear Physics B, 739:3 (2006), 389  crossref  isi
    8. A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “$M$-Theory of Matrix Models”, Theoret. and Math. Phys., 150:2 (2007), 153–164  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Lavrov P.M., Shapiro I.L., “Renormalization of gauge theories in curved space-time”, Physical Review D, 81:4 (2010), 044026  crossref  isi
    10. Quadri A., Slavnov A.A., “Renormalization of the Yang-Mills theory in the ambiguity-free gauge”, Journal of High Energy Physics, 2010, no. 7, 087  isi
    11. A. A. Slavnov, “Lorentz-invariant quantization of the Yang–Mills theory without Gribov ambiguity”, Proc. Steklov Inst. Math., 272 (2011), 235–245  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    12. Fuchs E., Kroyter M., “Analytical solutions of open string field theory”, Phys Rep, 502:4–5 (2011), 89–149  crossref  isi
    13. Kroyter M., “Superstring Field Theory in the Democratic Picture”, Adv. Theor. Math. Phys., 15:3 (2011), 741–781  isi
    14. Reshetnyak A., “On Gauge Independence For Gauge Models With Soft Breaking of Brst Symmetry”, Int. J. Mod. Phys. A, 29:30 (2014), 1450184  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:331
    Full text:148
    References:38
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020