RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1982, Volume 50, Number 3, Pages 370–382 (Mi tmf2292)  

This article is cited in 2 scientific papers (total in 2 papers)

Integration of functions in a space with complex number of dimensions

P. M. Bleher


Abstract: A study is made of analytic continuation with respect to the dimension of integrals of isotropic functions, $I(\nu)=\int f(x_1,…,x_n)d^\nu x_1…d^\nu x_n$, i.e., of functions such that $f(Ux_1,…,Ux_n)=f(x_1,…,x_n)$ for any orthogonal transformation $U\in O(\nu)$. The main result of the paper is the proof that if $f$ is a $C^\infty$ rapidly decreasing function, $f \in \mathscr S$, then $I(\nu)$ is an entire function of $\nu$. Its order is estimated as a generalized function over the space for $\mathscr S$ different complex values of $\nu$. A uniqueness theorem for the analytic continuation of $I(\nu)$ is established. Similar results are proved for an operator of integration with respect to some of the variables. The analytic continuation with respect to the dimension of the operator of Fourier transformation is considered.

Full text: PDF file (1651 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1982, 50:3, 243–251

Bibliographic databases:

Received: 10.12.1980

Citation: P. M. Bleher, “Integration of functions in a space with complex number of dimensions”, TMF, 50:3 (1982), 370–382; Theoret. and Math. Phys., 50:3 (1982), 243–251

Citation in format AMSBIB
\Bibitem{Ble82}
\by P.~M.~Bleher
\paper Integration of functions in a space with complex number of dimensions
\jour TMF
\yr 1982
\vol 50
\issue 3
\pages 370--382
\mathnet{http://mi.mathnet.ru/tmf2292}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=662213}
\zmath{https://zbmath.org/?q=an:0522.30001}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 50
\issue 3
\pages 243--251
\crossref{https://doi.org/10.1007/BF01016452}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982PK24500006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2292
  • http://mi.mathnet.ru/eng/tmf/v50/i3/p370

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. M. Bleher, M. D. Missarov, “Invariant manifolds of the Wilson renormalization group”, Theoret. and Math. Phys., 74:2 (1988), 132–136  mathnet  crossref  mathscinet  isi
    2. Yu. V. Kozitskii, “The Lee-Yang property for some isotropic spin models”, Theoret. and Math. Phys., 83:1 (1990), 353–361  mathnet  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:393
    Full text:107
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020