RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1981, Volume 47, Number 1, Pages 3–37 (Mi tmf2357)  

This article is cited in 1 scientific paper (total in 1 paper)

Do extended bodies move along geodesics of Riemannian space-time?

V. I. Denisov, A. A. Logunov, M. A. Mestvirishvili


Abstract: The motion of an extended self-gravitating body in the gravitational field of another distant body is studied in the post-Newtonian approximation of an arbitrary metric theory of gravitation. Comparison of the acceleration of the center of mass of the extended body with the acceleration of a point body moving in a Riemannian space-time whose metric is formally equivalent to the metric of two moving extended bodies shows that in any metric theory of gravitation possessing energy-momentum conservation laws for the matter and gravitational field taken together the center of mass of an extended body does not, in general, move along a geodesic of Riemannian space-time. Application of the obtained general formulas to the earth-sun system and the use of the lunar laser ranging data show that as the earth moves [n its orbit it executes oscillations with respect to a fiducial geodesic with a period of $\sim1$ h and an amplitude not less than $10^{-2}$ cm, which is a post-Newtonian quantity, so that the deviation of the earth's motion from a geodesic can be detected in a corresponding experiment with post-Newtonian accuracy. The difference between the accelerations of the center of mass of the earth and a test body in the post-Newtonian approximation is $10^{-7}$ of the earth's acceleration. The ratio of the earth's passive gravitational mass (defined as by Will) to its inertial mass is not unity but differs from it by an amount approximately equal to $10^{-8}$.

Full text: PDF file (4362 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1981, 47:1, 281–301

Bibliographic databases:

Received: 30.10.1980

Citation: V. I. Denisov, A. A. Logunov, M. A. Mestvirishvili, “Do extended bodies move along geodesics of Riemannian space-time?”, TMF, 47:1 (1981), 3–37; Theoret. and Math. Phys., 47:1 (1981), 281–301

Citation in format AMSBIB
\Bibitem{DenLogMes81}
\by V.~I.~Denisov, A.~A.~Logunov, M.~A.~Mestvirishvili
\paper Do extended bodies move along geodesics of Riemannian space-time?
\jour TMF
\yr 1981
\vol 47
\issue 1
\pages 3--37
\mathnet{http://mi.mathnet.ru/tmf2357}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=616438}
\zmath{https://zbmath.org/?q=an:0465.53045|0476.53038}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 47
\issue 1
\pages 281--301
\crossref{https://doi.org/10.1007/BF01017018}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1981MS49200001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2357
  • http://mi.mathnet.ru/eng/tmf/v47/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Denisov, A. A. Logunov, Yu. V. Chugreev, “Inequality of the passive gravitational mass and the inertial mass of an extended body”, Theoret. and Math. Phys., 66:1 (1986), 1–7  mathnet  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:380
    Full text:143
    References:36
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020