RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1982, Volume 52, Number 2, Pages 244–251 (Mi tmf2523)  

This article is cited in 6 scientific papers (total in 6 papers)

Group structure and the basis of conservation laws

R. S. Khamitova


Abstract: The derivation of conservation laws for invariant variational problems is based on Noether's identity. It is shown that this identity also makes it possible to establish a connection between a basis of conservation laws (with respect to the group $G$ admitted by the considered system of differential equations) and the structure of the Lie algebra of $G$. This provides a justifieation for the basis construction scheme proposed by Ibragimov.

Full text: PDF file (739 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1982, 52:2, 777–781

Bibliographic databases:

Received: 02.12.1980

Citation: R. S. Khamitova, “Group structure and the basis of conservation laws”, TMF, 52:2 (1982), 244–251; Theoret. and Math. Phys., 52:2 (1982), 777–781

Citation in format AMSBIB
\Bibitem{Kha82}
\by R.~S.~Khamitova
\paper Group structure and the basis of conservation laws
\jour TMF
\yr 1982
\vol 52
\issue 2
\pages 244--251
\mathnet{http://mi.mathnet.ru/tmf2523}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=683441}
\zmath{https://zbmath.org/?q=an:0492.35049}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 52
\issue 2
\pages 777--781
\crossref{https://doi.org/10.1007/BF01018418}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982QF16500009}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2523
  • http://mi.mathnet.ru/eng/tmf/v52/i2/p244

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Zharinov, “Conservation laws of evolution systems”, Theoret. and Math. Phys., 68:2 (1986), 745–751  mathnet  crossref  mathscinet  zmath  isi
    2. I. Yu. Krivsky, V. M. Simulik, “Noether analysis of zilch conservation laws and their generalization for the electromagnetic field. I. Use of different formulations of the principle of least action”, Theoret. and Math. Phys., 80:2 (1989), 864–874  mathnet  crossref  mathscinet  isi
    3. Rosenhaus, V, “Boundary conditions and conserved densities for potential Zabolotskaya-Khokhlov equation”, Journal of Nonlinear Mathematical Physics, 13:2 (2006), 255  crossref  mathscinet  zmath  adsnasa  isi
    4. M. V. Neschadim, “Zakony sokhraneniya dlya sistemy tipa reaktsiya-diffuziya”, Sib. zhurn. industr. matem., 11:4 (2008), 125–135  mathnet  mathscinet
    5. M. V. Neshchadim, “Conservation laws for a system of diffusion reaction type with one spatial variable”, J. Appl. Industr. Math., 5:3 (2011), 400–405  mathnet  crossref  mathscinet
    6. Cheviakov A.F., Naz R., “A Recursion Formula For the Construction of Local Conservation Laws of Differential Equations”, J. Math. Anal. Appl., 448:1 (2017), 198–212  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:211
    Full text:84
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019