RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1982, Volume 52, Number 2, Pages 284–291 (Mi tmf2528)  

Equivalence of Gibbs ensembles for classical lattice systems

V. V. Krivolapova


Abstract: For lattice systems with many-particle absolutely summable interaction it is shown for all $\beta>0$ and $1>\rho>0$that the limiting generating functionals of the canonical and grand canonical ensembles satisfy the Bogolyubov equation and in this sense the ensembles are equivalent. For systems with binary interaction, it is shown that the Bogolyubov equation has several solutions for the parameters $(z,\beta)$ for which the one-to-one correspondence with the parameters $(\rho,\beta)$ is broken.

Full text: PDF file (831 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1982, 52:2, 803–814

Bibliographic databases:

Received: 21.10.1981

Citation: V. V. Krivolapova, “Equivalence of Gibbs ensembles for classical lattice systems”, TMF, 52:2 (1982), 284–291; Theoret. and Math. Phys., 52:2 (1982), 803–814

Citation in format AMSBIB
\Bibitem{Kri82}
\by V.~V.~Krivolapova
\paper Equivalence of Gibbs ensembles for classical lattice systems
\jour TMF
\yr 1982
\vol 52
\issue 2
\pages 284--291
\mathnet{http://mi.mathnet.ru/tmf2528}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=683444}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 52
\issue 2
\pages 803--814
\crossref{https://doi.org/10.1007/BF01018422}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982QF16500013}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2528
  • http://mi.mathnet.ru/eng/tmf/v52/i2/p284

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:229
    Full text:72
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021