|
Equivalence of Gibbs ensembles for classical lattice systems
V. V. Krivolapova
Abstract:
For lattice systems with many-particle absolutely summable interaction it is shown
for all $\beta>0$ and $1>\rho>0$that the limiting generating functionals of the canonical and grand canonical ensembles satisfy the Bogolyubov equation and in this sense the ensembles are equivalent. For systems with binary interaction, it is shown that the Bogolyubov equation has several solutions for the parameters
$(z,\beta)$ for which the one-to-one correspondence with the parameters
$(\rho,\beta)$ is broken.
Full text:
PDF file (831 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1982, 52:2, 803–814
Bibliographic databases:
Received: 21.10.1981
Citation:
V. V. Krivolapova, “Equivalence of Gibbs ensembles for classical lattice systems”, TMF, 52:2 (1982), 284–291; Theoret. and Math. Phys., 52:2 (1982), 803–814
Citation in format AMSBIB
\Bibitem{Kri82}
\by V.~V.~Krivolapova
\paper Equivalence of Gibbs ensembles for classical lattice systems
\jour TMF
\yr 1982
\vol 52
\issue 2
\pages 284--291
\mathnet{http://mi.mathnet.ru/tmf2528}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=683444}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 52
\issue 2
\pages 803--814
\crossref{https://doi.org/10.1007/BF01018422}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982QF16500013}
Linking options:
http://mi.mathnet.ru/eng/tmf2528 http://mi.mathnet.ru/eng/tmf/v52/i2/p284
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 229 | Full text: | 72 | References: | 36 | First page: | 1 |
|