RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2003, Volume 137, Number 2, Pages 176–187 (Mi tmf262)  

The Infinite-Genus Limit of the Whitham Equations

G. A. Elab

a Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
b Coventry University

Abstract: We derive the infinite-genus limit of the KdV–Whitham equations based on the special scaling of the spectral curve introduced by Venakides in the study of the continuum limit of theta functions. The limit describes evolution of the integrated density of states in a one-dimensional soliton gas.

Keywords: finite-gap potentials, rotation number, thermodynamic limit

DOI: https://doi.org/10.4213/tmf262

Full text: PDF file (233 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2003, 137:2, 1505–1514

Bibliographic databases:


Citation: G. A. El, “The Infinite-Genus Limit of the Whitham Equations”, TMF, 137:2 (2003), 176–187; Theoret. and Math. Phys., 137:2 (2003), 1505–1514

Citation in format AMSBIB
\Bibitem{El03}
\by G.~A.~El
\paper The Infinite-Genus Limit of the Whitham Equations
\jour TMF
\yr 2003
\vol 137
\issue 2
\pages 176--187
\mathnet{http://mi.mathnet.ru/tmf262}
\crossref{https://doi.org/10.4213/tmf262}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2057894}
\zmath{https://zbmath.org/?q=an:1178.37100}
\elib{http://elibrary.ru/item.asp?id=13442480}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 2
\pages 1505--1514
\crossref{https://doi.org/10.1023/A:1027353600801}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000187431800002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf262
  • https://doi.org/10.4213/tmf262
  • http://mi.mathnet.ru/eng/tmf/v137/i2/p176

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:190
    Full text:79
    References:37
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019