RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1972, Volume 10, Number 2, Pages 238–248 (Mi tmf2661)  

Scattering problem for radial Schrödinger equation with a slowly decreasing potential

V. B. Matveev, M. M. Skriganov


Abstract: The scattering problem for the Schrodinger equation with slowly decreasing potential is considered. Stationary wave operators $W_{\pm}(H,H_0)$ are constructed and their completeness is proved. It is shown that the operators $W_{\pm}(H,H_0)$ can also be defined as the limits $W_{\pm}(H,H_0)=\lim{t\to\pm\infty} \exp(itH)T_{\pm}\exp(-itH_0)$, $T_{\pm}$ being some operators, which do not depend on $t$, do not commute with $H_0$ and can be constructed explicity for the :given potential $q(x)$.The invariance principle for the wave operators $W_{\pm}$ is proved.

Full text: PDF file (1107 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1972, 10:2, 156–164

Bibliographic databases:

Received: 15.12.1970

Citation: V. B. Matveev, M. M. Skriganov, “Scattering problem for radial Schrödinger equation with a slowly decreasing potential”, TMF, 10:2 (1972), 238–248; Theoret. and Math. Phys., 10:2 (1972), 156–164

Citation in format AMSBIB
\Bibitem{MatSkr72}
\by V.~B.~Matveev, M.~M.~Skriganov
\paper Scattering problem for radial Schr\" odinger equation with a slowly decreasing potential
\jour TMF
\yr 1972
\vol 10
\issue 2
\pages 238--248
\mathnet{http://mi.mathnet.ru/tmf2661}
\zmath{https://zbmath.org/?q=an:0254.47018}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 10
\issue 2
\pages 156--164
\crossref{https://doi.org/10.1007/BF01090727}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2661
  • http://mi.mathnet.ru/eng/tmf/v10/i2/p238

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:343
    Full text:86
    References:42
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020