RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1972, Volume 11, Number 3, Pages 344–353 (Mi tmf2874)  

On groups that correspond to the simplest problems of classical mechanics

È. È. Shnol'


Abstract: The following questions are discussed: 1) what is the maximum possible complexity of a finite-dimensional group $\mathscr{G}$ of “latent” symmetry? 2) does the existence of a complete set of single-valued integrals of motion always imply the existence of a nontrivial group $\mathscr{G}$? The impossibility of essential extension of the groups $\mathscr{G}$ for known examples is proved; a negative answer is given to the second question.

Full text: PDF file (1310 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1972, 11:3, 557–564

Bibliographic databases:

Received: 25.05.1971

Citation: È. È. Shnol', “On groups that correspond to the simplest problems of classical mechanics”, TMF, 11:3 (1972), 344–353; Theoret. and Math. Phys., 11:3 (1972), 557–564

Citation in format AMSBIB
\Bibitem{Shn72}
\by \`E.~\`E.~Shnol'
\paper On groups that correspond to the simplest problems of classical mechanics
\jour TMF
\yr 1972
\vol 11
\issue 3
\pages 344--353
\mathnet{http://mi.mathnet.ru/tmf2874}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=475376}
\zmath{https://zbmath.org/?q=an:0241.70025}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 11
\issue 3
\pages 557--564
\crossref{https://doi.org/10.1007/BF01028372}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2874
  • http://mi.mathnet.ru/eng/tmf/v11/i3/p344

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:198
    Full text:97
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020