Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1972, Volume 11, Number 3, Pages 354–365 (Mi tmf2875)  

This article is cited in 10 scientific papers (total in 10 papers)

On the theory of the superfluidity of two- and one-dimensional bose systems

V. N. Popov


Abstract: A hydrodynamic Hamiltonian for two- and one-dimensional Bose systems is constructed by the method of functional integration. Its form indicates that there is superfluidity and two- fluid hydrodynamics at low temperatures despite the absence of a condensate. This result is clear from the fact that the single-particle Green's functions decrease at large distances in accordance with a power law in two-dimensional systems if $T\ne0$ and in one-dimensional systems if $T=0$, while they decrease exponentially in one-dimensional systems if $T\ne0$. A model is calculated for a two-dimensional low-density Bose gas; the thermodynamic functions and the equation of the phase transition curve are found. It is shown that allowance for quantum vortices in a two-dimensional Bose system does not alter the power-law decrease of the Green's functions at large distances.

Full text: PDF file (1280 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1972, 11:3, 565–573

Received: 12.07.1971

Citation: V. N. Popov, “On the theory of the superfluidity of two- and one-dimensional bose systems”, TMF, 11:3 (1972), 354–365; Theoret. and Math. Phys., 11:3 (1972), 565–573

Citation in format AMSBIB
\Bibitem{Pop72}
\by V.~N.~Popov
\paper On the theory of the superfluidity of two- and one-dimensional bose systems
\jour TMF
\yr 1972
\vol 11
\issue 3
\pages 354--365
\mathnet{http://mi.mathnet.ru/tmf2875}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 11
\issue 3
\pages 565--573
\crossref{https://doi.org/10.1007/BF01028373}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2875
  • http://mi.mathnet.ru/eng/tmf/v11/i3/p354

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Popov, “Theory of one-dimensional Bose gas with point interaction”, Theoret. and Math. Phys., 30:3 (1977), 222–226  mathnet  crossref  mathscinet
    2. N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, “Critical exponents in completely integrable models of quantum statistical physics”, Theoret. and Math. Phys., 70:1 (1987), 94–102  mathnet  crossref  mathscinet  isi
    3. A. V. Zabrodin, A. A. Ovchinnikov, “Single-particle density matrix of a one-dimensional system of spin 1/2 Fermi particles”, Theoret. and Math. Phys., 85:3 (1990), 1321–1325  mathnet  crossref  isi
    4. N. M. Bogolyubov, K. L. Malyshev, “Functional integration and the twopoint correlation function of the one-dimensional Bose-gas in the harmonic potential”, St. Petersburg Math. J., 17:1 (2006), 63–84  mathnet  crossref  mathscinet  zmath
    5. N. M. Bogolyubov, K. L. Malyshev, “On the calculation of the asymptotics of the two-point correlation function of the one-dimensional Bose gas in the trapping potential”, J. Math. Sci. (N. Y.), 151:2 (2008), 2829–2839  mathnet  crossref  mathscinet
    6. Werner F., Castin Y., “General Relations for Quantum Gases in Two and Three Dimensions: Two-Component Fermions”, Phys. Rev. A, 86:1 (2012), 013626  crossref  isi
    7. Pustilnik M. Matveev K.A., “Fate of Classical Solitons in One-Dimensional Quantum Systems”, Phys. Rev. B, 92:19 (2015), 195146  crossref  isi
    8. Salasnich L., “Goldstone and Higgs Hydrodynamics in the Bcs-Bec Crossover”, Condens. Matter, 2:2 (2017), UNSP 22  crossref  isi
    9. Martone G.I., Larre P.-E., Fabbri A., Pavloff N., “Momentum Distribution and Coherence of a Weakly Interacting Bose Gas After a Quench”, Phys. Rev. A, 98:6 (2018), 063617  crossref  mathscinet  isi  scopus
    10. M. M. Glazov, R. A. Suris, “Collective states of excitons in semiconductors”, Phys. Usp., 63:11 (2020), 1051–1071  mathnet  crossref  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:575
    Full text:305
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021