RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1979, Volume 40, Number 2, Pages 155–178 (Mi tmf2886)  

This article is cited in 8 scientific papers (total in 10 papers)

Tauberian theorems in quantum field theory

V. S. Vladimirov, B. I. Zavialov


Abstract: The use of Tauberian theorems in quantum field theory is studied in particular connection with the scaling of the form factors of deep inelastic scattering and the asymptotic behavior of the Wightman two-point function.

Full text: PDF file (3201 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1979, 40:2, 660–677

Bibliographic databases:

Document Type: Article
Received: 16.10.1978

Citation: V. S. Vladimirov, B. I. Zavialov, “Tauberian theorems in quantum field theory”, TMF, 40:2 (1979), 155–178; Theoret. and Math. Phys., 40:2 (1979), 660–677

Citation in format AMSBIB
\Bibitem{VlaZav79}
\by V.~S.~Vladimirov, B.~I.~Zavialov
\paper Tauberian theorems in quantum field theory
\jour TMF
\yr 1979
\vol 40
\issue 2
\pages 155--178
\mathnet{http://mi.mathnet.ru/tmf2886}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=549613}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 40
\issue 2
\pages 660--677
\crossref{https://doi.org/10.1007/BF01018716}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1979JG19600001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf2886
  • http://mi.mathnet.ru/eng/tmf/v40/i2/p155

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Kvinikhidze, B. A. Magradze, V. A. Matveev, M. A. Mestvirishvili, A. N. Tavkhelidze, “Integral equation for the causal distributions and their self-similar asymptotic behavior in the ladder $\Phi^3$ model”, Theoret. and Math. Phys., 45:3 (1980), 1041–1048  mathnet  crossref  mathscinet  isi
    2. B. I. Zavialov, “Jost–Lehmann–Dyson representation in the spaces $S'_\alpha$”, Theoret. and Math. Phys., 49:2 (1981), 945–951  mathnet  crossref  mathscinet  isi
    3. V. S. Vladimirov, B. I. Zavialov, “Self-similar asymptotic behavior of causal functions and their behavior on the light cone”, Theoret. and Math. Phys., 50:2 (1982), 105–126  mathnet  crossref  mathscinet  isi
    4. F. A. Lunev, “Invariant current algebra on the light cone and deep inelastic lepton-hadron scattering. I”, Theoret. and Math. Phys., 52:2 (1982), 772–776  mathnet  crossref  isi
    5. A. D. Linkevich, V. I. Savrin, N. B. Skachkov, “Structure functions of relativistic systems composed of two spin 1/2 particles”, Theoret. and Math. Phys., 53:1 (1982), 955–962  mathnet  crossref  mathscinet  isi
    6. N. N. Bogolyubov, A. A. Logunov, G. I. Marchuk, “Vasilii Sergeevich Vladimirov (on his sixtieth birthday)”, Russian Math. Surveys, 38:1 (1983), 231–243  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. F. A. Lunev, “Invariant current algebra on the light cone and deep inelastic lepton-hadron scattering. II”, Theoret. and Math. Phys., 55:3 (1983), 569–580  mathnet  crossref  mathscinet  isi
    8. F. A. Lunev, “Invariant current algebra on the light cone and deep inelastic Lepton–Hadron scattering. III. Neutrino reactions”, Theoret. and Math. Phys., 56:1 (1983), 654–661  mathnet  crossref  isi
    9. M. K. Kerimov, “Vasiliĭ Sergeevich Vladimirov (on the occasion of his eightieth birthday)”, Comput. Math. Math. Phys., 43:11 (2003), 1541–1549  mathnet  mathscinet
    10. Pilipovic S. Vindas J., “Multidimensional Tauberian Theorems For Vector-Valued Distributions”, Publ. Inst. Math.-Beograd, 95:109 (2014), 1–28  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:236
    Full text:59
    References:35
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019