|
This article is cited in 2 scientific papers (total in 2 papers)
Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach
A. K. Abramyan, S. A. Vakulenko Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Abstract:
Some classes of dissipative and Hamiltonian distributed systems are described. The dynamics of these systems is effectively reduced to finite-dimensional dynamics which can be unboundedly complex in a sense. Yarying the parameters of these systems, we can obtain an arbitrary (to within the orbital topological equivalence) structurally stable attractor in the dissipative case and an arbitrary polynomial weakly integrable Hamiltonian in the conservative case. As examples, we consider Hopfield neural networks and some reaction-diffusion systems in the dissipative case and a nonlinear string in the Hamiltonian case.
DOI:
https://doi.org/10.4213/tmf303
Full text:
PDF file (280 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2002, 130:2, 245–255
Bibliographic databases:
Received: 24.05.2001
Citation:
A. K. Abramyan, S. A. Vakulenko, “Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach”, TMF, 130:2 (2002), 287–300; Theoret. and Math. Phys., 130:2 (2002), 245–255
Citation in format AMSBIB
\Bibitem{AbrVak02}
\by A.~K.~Abramyan, S.~A.~Vakulenko
\paper Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach
\jour TMF
\yr 2002
\vol 130
\issue 2
\pages 287--300
\mathnet{http://mi.mathnet.ru/tmf303}
\crossref{https://doi.org/10.4213/tmf303}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1922012}
\zmath{https://zbmath.org/?q=an:1077.34047}
\elib{http://elibrary.ru/item.asp?id=13396982}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 130
\issue 2
\pages 245--255
\crossref{https://doi.org/10.1023/A:1014243500528}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000174582900006}
Linking options:
http://mi.mathnet.ru/eng/tmf303https://doi.org/10.4213/tmf303 http://mi.mathnet.ru/eng/tmf/v130/i2/p287
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Danca M.-F., Kuznetsov N., “Hidden Chaotic Sets in a Hopfield Neural System”, Chaos Solitons Fractals, 103 (2017), 144–150
-
Vaseghi B., Pourmina M.A., Mobayen S., “Finite-Time Chaos Synchronization and Its Application in Wireless Sensor Networks”, Trans. Inst. Meas. Control, 40:13 (2018), 3788–3799
|
Number of views: |
This page: | 293 | Full text: | 112 | References: | 35 | First page: | 1 |
|