RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1978, Volume 36, Number 3, Pages 414–425 (Mi tmf3090)  

Model of the passing of the $s$-term through the parabolic boundary of the continuum

A. K. Kazanskii


Abstract: An exactly solvable (by means of a computer) model of inelastic processes in a system of two atomic particles that form a stable molecule and a weakly bound $s$-electron is discussed. In it, one can describe a system with a stable molecular ion, as well as a system in which there is no such ion. The results of some numerical calculations are given.

Full text: PDF file (1367 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1978, 36:3, 825–832

Received: 20.07.1977

Citation: A. K. Kazanskii, “Model of the passing of the $s$-term through the parabolic boundary of the continuum”, TMF, 36:3 (1978), 414–425; Theoret. and Math. Phys., 36:3 (1978), 825–832

Citation in format AMSBIB
\Bibitem{Kaz78}
\by A.~K.~Kazanskii
\paper Model of the passing of the $s$-term through the parabolic boundary of the continuum
\jour TMF
\yr 1978
\vol 36
\issue 3
\pages 414--425
\mathnet{http://mi.mathnet.ru/tmf3090}
\transl
\jour Theoret. and Math. Phys.
\yr 1978
\vol 36
\issue 3
\pages 825--832
\crossref{https://doi.org/10.1007/BF01035758}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3090
  • http://mi.mathnet.ru/eng/tmf/v36/i3/p414

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:182
    Full text:63
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019