General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 1977, Volume 32, Number 2, Pages 147–166 (Mi tmf3146)  

This article is cited in 8 scientific papers (total in 8 papers)

Geometrized theories of gravitation

A. A. Logunov, V. N. Folomeshkin

Abstract: General properties of geometrized theories of gravitation are considered. Geometrization of the theory is performed only to the extent which is necessarily prescribed by the experiment (the geometrization of the Lagrangian density of matter only). Im the general case, equations of gravitational field and equations of motion of the matter are formulated in different riemannian spaces. Covariant formulation of the energymomentum conservation laws in arbitrary geometrized theory is given. In this formulation of conservation laws, introduction of the noncovariant notion of “pseudotensor” is not required. In completely geometrized theory (e.g., in the Einstein theory) free gravitational waves do not transfer any energy. But if, by the analogy with other physical fields, we require the gravitational waves to transfer energy and momentum, the Lagrangian of the gravitational field should not be geometrized. Properties of one of the variants of quasilinear geometrized theory describing experimental facts are considered. In this theory the fundamental static solution with spherical symmetry possesses the singularity only in the centre of coordinates and as a consequence, thereare no black holes in the theory. The theory makes it possible to formulate a satisfying model of homogeneous nonstationary Universe.

Full text: PDF file (2779 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1977, 32:2, 653–666

Bibliographic databases:

Received: 18.03.1977

Citation: A. A. Logunov, V. N. Folomeshkin, “Geometrized theories of gravitation”, TMF, 32:2 (1977), 147–166; Theoret. and Math. Phys., 32:2 (1977), 653–666

Citation in format AMSBIB
\by A.~A.~Logunov, V.~N.~Folomeshkin
\paper Geometrized theories of gravitation
\jour TMF
\yr 1977
\vol 32
\issue 2
\pages 147--166
\jour Theoret. and Math. Phys.
\yr 1977
\vol 32
\issue 2
\pages 653--666

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Logunov, V. N. Folomeshkin, “Energy-momentum of gravitational waves in the general theory of relativity”, Theoret. and Math. Phys., 32:2 (1977), 667–672  mathnet  crossref  mathscinet  zmath
    2. A. A. Logunov, V. N. Folomeshkin, “The energy-momentum problem and the theory of gravitation”, Theoret. and Math. Phys., 32:3 (1977), 749–771  mathnet  crossref  mathscinet  zmath
    3. A. A. Logunov, V. N. Folomeshkin, “Does the energy of the source change when gravitational waves are emitted in Einstein's theory of gravitation?”, Theoret. and Math. Phys., 33:2 (1977), 952–959  mathnet  crossref  zmath
    4. G. S. Asanov, “Integrable covariant energy-momentum conservation law for the gravitational field with absolute parallelism structure”, Theoret. and Math. Phys., 39:1 (1979), 331–335  mathnet  crossref
    5. A. A. Logunov, V. I. Denisov, A. A. Vlasov, M. A. Mestvirishvili, V. N. Folomeshkin, “New concepts of space-time and gravitation”, Theoret. and Math. Phys., 40:3 (1979), 753–777  mathnet  crossref  mathscinet  zmath  isi
    6. V. I. Denisov, A. A. Logunov, “New theory of space-time and gravitation”, Theoret. and Math. Phys., 50:1 (1982), 1–48  mathnet  crossref  mathscinet  zmath  isi
    7. V. I. Denisov, V. O. Soloviev, “The energy determined in general relativity on the basis of the traditional Hamiltonian approach does not have physical meaning”, Theoret. and Math. Phys., 56:2 (1983), 832–841  mathnet  crossref  mathscinet  zmath  isi
    8. V. I. Denisov, “Development of the concept of natural geometry for physical interactions”, Theoret. and Math. Phys., 191:2 (2017), 649–654  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:500
    Full text:196
    First page:4

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019