General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 1977, Volume 32, Number 3, Pages 291–325 (Mi tmf3159)  

This article is cited in 7 scientific papers (total in 7 papers)

The energy-momentum problem and the theory of gravitation

A. A. Logunov, V. N. Folomeshkin

Abstract: General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system “matter plus gravitational field” and, in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational field is considered in the usual framevork of the Lorents-invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrisation makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the knowr experimental facts [17] are described successfully. For strong gravitational fields, the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy.

Full text: PDF file (4932 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1977, 32:3, 749–771

Bibliographic databases:

Received: 15.04.1977

Citation: A. A. Logunov, V. N. Folomeshkin, “The energy-momentum problem and the theory of gravitation”, TMF, 32:3 (1977), 291–325; Theoret. and Math. Phys., 32:3 (1977), 749–771

Citation in format AMSBIB
\by A.~A.~Logunov, V.~N.~Folomeshkin
\paper The energy-momentum problem and the theory of gravitation
\jour TMF
\yr 1977
\vol 32
\issue 3
\pages 291--325
\jour Theoret. and Math. Phys.
\yr 1977
\vol 32
\issue 3
\pages 749--771

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Logunov, V. N. Folomeshkin, “Does the energy of the source change when gravitational waves are emitted in Einstein's theory of gravitation?”, Theoret. and Math. Phys., 33:2 (1977), 952–959  mathnet  crossref  zmath
    2. G. S. Asanov, “Integrable covariant energy-momentum conservation law for the gravitational field with absolute parallelism structure”, Theoret. and Math. Phys., 39:1 (1979), 331–335  mathnet  crossref
    3. A. A. Logunov, V. I. Denisov, A. A. Vlasov, M. A. Mestvirishvili, V. N. Folomeshkin, “New concepts of space-time and gravitation”, Theoret. and Math. Phys., 40:3 (1979), 753–777  mathnet  crossref  mathscinet  zmath  isi
    4. V. I. Denisov, A. A. Logunov, “New theory of space-time and gravitation”, Theoret. and Math. Phys., 50:1 (1982), 1–48  mathnet  crossref  mathscinet  zmath  isi
    5. V. I. Denisov, V. O. Soloviev, “The energy determined in general relativity on the basis of the traditional Hamiltonian approach does not have physical meaning”, Theoret. and Math. Phys., 56:2 (1983), 832–841  mathnet  crossref  mathscinet  zmath  isi
    6. Lompay R.R., Petrov A.N., “Covariant Differential Identities and Conservation Laws in Metric-Torsion Theories of Gravitation. I. General Consideration”, J. Math. Phys., 54:6 (2013), 062504  crossref  isi
    7. V. I. Denisov, “Development of the concept of natural geometry for physical interactions”, Theoret. and Math. Phys., 191:2 (2017), 649–654  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:473
    Full text:156
    First page:5

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019