RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1976, Volume 26, Number 2, Pages 221–233 (Mi tmf3190)  

This article is cited in 4 scientific papers (total in 4 papers)

Creation and scattering of particles by a nonstationary electromagnetic field in the canonical formalism

A. A. Grib, V. M. Mostepanenko, V. M. Frolov


Abstract: A study is made of the creation and scattering of particles by a nonstationary electromagnetic field of arbitrary form. Bogolyubov's method of canonical transformations is used to obtain exact expressions for the number density of the fermion and boson pairs created by the external field and also for the amplitudes of transition from an arbitrary initial to an arbitrary final state. The explicit connection between the $in$- and $out$-vacuum states is found. In the framework of the proposed formalism, a proof is given in the general case of Feynman's assertion that, with allowance for particle creation by a field and the connection between spin and statistics, the total probability of scattering is equal to unity.

Full text: PDF file (1408 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1976, 26:2, 148–155

Bibliographic databases:

Received: 13.02.1975

Citation: A. A. Grib, V. M. Mostepanenko, V. M. Frolov, “Creation and scattering of particles by a nonstationary electromagnetic field in the canonical formalism”, TMF, 26:2 (1976), 221–233; Theoret. and Math. Phys., 26:2 (1976), 148–155

Citation in format AMSBIB
\Bibitem{GriMosFro76}
\by A.~A.~Grib, V.~M.~Mostepanenko, V.~M.~Frolov
\paper Creation and scattering of particles by a~nonstationary electromagnetic field in the canonical formalism
\jour TMF
\yr 1976
\vol 26
\issue 2
\pages 221--233
\mathnet{http://mi.mathnet.ru/tmf3190}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=449291}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 26
\issue 2
\pages 148--155
\crossref{https://doi.org/10.1007/BF01079420}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3190
  • http://mi.mathnet.ru/eng/tmf/v26/i2/p221

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. S. Starostin, “Bethe–Salpeter formalism in the field of a plane electromagnetic wave”, Theoret. and Math. Phys., 42:3 (1980), 217–224  mathnet  crossref  isi
    2. A. A. Lobashev, V. M. Mostepanenko, “Quantum effects in nonlinear insulating materials in the presence of a nonstationary electromagnetic field”, Theoret. and Math. Phys., 86:3 (1991), 303–309  mathnet  crossref
    3. A. A. Lobashov, V. M. Mostepanenko, “Quantum effects associated with parametric generation of light and the theory of squeezed states”, Theoret. and Math. Phys., 88:3 (1991), 913–925  mathnet  crossref  isi
    4. A. A. Lobashev, V. M. Mostepanenko, “Heisenberg representation of second-quantized fields in stationary external fields and nonlinear dielectric media”, Theoret. and Math. Phys., 97:3 (1993), 1393–1404  mathnet  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:198
    Full text:84
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019