RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1977, Volume 33, Number 1, Pages 17–31 (Mi tmf3201)  

This article is cited in 7 scientific papers (total in 7 papers)

Uniformization method in the theory of Nonlinear Hamiltonian systems of Vlasov and Hartree type

V. P. Belavkin, V. P. Maslov


Abstract: Possibilities of obtaining the approximate solutions to the equations of the Hartree type from the known solutions of the uniformized linear equations are investigated. Nonlinear hamiltonian systems described by abstract equations of the Vlassov and Hartree type are considered by means of algebraic methods. New notion of the “unif ormization” is introduced which represents the generalization of the second quantization method for arbitrary Hamiltonian (Lie–Jordan) algebras, in particular, for operator algebras in indefinite spaces. Functional calculus of uniformized observables is developed, extending and unifying the calculus of generating functionals of commuting; and anticommuting variables for even operators.

Full text: PDF file (1934 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1977, 33:1, 852–862

Bibliographic databases:

Received: 23.02.1977

Citation: V. P. Belavkin, V. P. Maslov, “Uniformization method in the theory of Nonlinear Hamiltonian systems of Vlasov and Hartree type”, TMF, 33:1 (1977), 17–31; Theoret. and Math. Phys., 33:1 (1977), 852–862

Citation in format AMSBIB
\Bibitem{BelMas77}
\by V.~P.~Belavkin, V.~P.~Maslov
\paper Uniformization method in the theory of Nonlinear Hamiltonian systems of Vlasov and Hartree type
\jour TMF
\yr 1977
\vol 33
\issue 1
\pages 17--31
\mathnet{http://mi.mathnet.ru/tmf3201}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=478881}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 33
\issue 1
\pages 852--862
\crossref{https://doi.org/10.1007/BF01039008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3201
  • http://mi.mathnet.ru/eng/tmf/v33/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Belavkin, V. P. Maslov, S. È. Tariverdiev, “Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov–Feller equations”, Theoret. and Math. Phys., 49 (1981), 1043–1049  mathnet  crossref  mathscinet  isi
    2. V. I. Gerasimenko, “Dynamical equations of quantum-classical systems”, Theoret. and Math. Phys., 50:1 (1982), 49–55  mathnet  crossref  mathscinet  isi
    3. V. P. Maslov, A. M. Chebotarev, “On random fields corresponding to the BBGKY, Vlasov, and Boltzmann hierarchies”, Theoret. and Math. Phys., 54:1 (1983), 48–55  mathnet  crossref  mathscinet  isi
    4. V. P. Maslov, O. Yu. Shvedov, “Asymptotics of a solution of an $N$-partial Liouville equation for large $N$ and refutation of the chaos hypothesis for density functions”, Math. Notes, 56:2 (1994), 872–874  mathnet  crossref  mathscinet  zmath  isi
    5. V. P. Maslov, O. Yu. Shvedov, “Complex germ method in the Fock space. II. Asymptotics, corresponding to finite-dimensional isotropic manifolds”, Theoret. and Math. Phys., 104:3 (1995), 1141–1161  mathnet  crossref  mathscinet  zmath  isi
    6. Maslov, VP, “Large-N expansion as a semiclassical approximation to the third-quantized theory”, Physical Review D, 6010:10 (1999), 105012
    7. Maslov V.P., Shvedov O.Y., “Large-N expansion as a semiclassical approximation to the third-quantized theory”, Physical Review D, 60:10 (1999), 105012  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:332
    Full text:91
    References:40
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019