RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1976, Volume 26, Number 3, Pages 341–351 (Mi tmf3228)  

This article is cited in 3 scientific papers (total in 3 papers)

High-temperature expansions at an arbitrary magnetization in the ising model

N. M. Bogolyubov, V. F. Brattsev, A. N. Vasil'ev, A. L. Korzhenevskii, R. A. Radzhabov

Leningrad State University

Abstract: The first eight orders are calculated in the high-temperature expansion in powers of $\beta=1/kT$ of the function $\varphi(\alpha , \beta)$ ($\alpha$ is the magnetization), which is the Legendre transform of the specific logarithm of the partition function $w$ with respect to the reduced external field $\alpha\equiv\beta h$. This is equivalent to calculating $w$ in an arbitrary external field in temperature-magnetization variables. The transition from the field to the magnetization enables one to use the high-temperature expansion below the Curie point as well, and, in particular, it enables one to calculate the spontaneous magnetization in zero field below the transition point. The calculations are made for two planar (square and triangular) and three three-dimensional (simple cubic, bcc and fcc) lattices, two variants being considered for the three-dimensional lattices: interaction of only nearest neighbors and interaction of first and second neighbors.

Full text: PDF file (1413 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1976, 26:3, 230–237

Received: 17.07.1974
Revised: 13.10.1975

Citation: N. M. Bogolyubov, V. F. Brattsev, A. N. Vasil'ev, A. L. Korzhenevskii, R. A. Radzhabov, “High-temperature expansions at an arbitrary magnetization in the ising model”, TMF, 26:3 (1976), 341–351; Theoret. and Math. Phys., 26:3 (1976), 230–237

Citation in format AMSBIB
\Bibitem{BogBraVas76}
\by N.~M.~Bogolyubov, V.~F.~Brattsev, A.~N.~Vasil'ev, A.~L.~Korzhenevskii, R.~A.~Radzhabov
\paper High-temperature expansions at an~arbitrary magnetization in the ising model
\jour TMF
\yr 1976
\vol 26
\issue 3
\pages 341--351
\mathnet{http://mi.mathnet.ru/tmf3228}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 26
\issue 3
\pages 230--237
\crossref{https://doi.org/10.1007/BF01032093}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3228
  • http://mi.mathnet.ru/eng/tmf/v26/i3/p341

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Bogolyubov, “Convergence of Feynman diagram expansions in the Ising model”, Theoret. and Math. Phys., 30:1 (1977), 88–90  mathnet  crossref  mathscinet
    2. V. V. Borzov, “High-temperature behavior of the partition function for the $P(\varphi)_2$ model of Euclidean field theory”, Theoret. and Math. Phys., 76:3 (1988), 895–903  mathnet  crossref  mathscinet  isi
    3. N. M. Bogolyubov, K. L. Malyshev, “Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions”, Theoret. and Math. Phys., 169:2 (2011), 1517–1529  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:243
    Full text:80
    References:49
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019