RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1980, Volume 43, Number 3, Pages 330–342 (Mi tmf3236)  

This article is cited in 6 scientific papers (total in 6 papers)

Description of the form factor of a relativistic two-particle system in the covariant Hamiltonian formulation of quantum field theory

N. B. Skachkov, I. L. Solovtsov


Abstract: On the basis of the hamiltonian formulation of quantum field theory proposed by Kadyshevsky, the three-dimensional relativistic approach is developed for describing the form factors of composite systems.

Full text: PDF file (1434 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1980, 43:3, 494–502

Bibliographic databases:

Received: 02.03.1979

Citation: N. B. Skachkov, I. L. Solovtsov, “Description of the form factor of a relativistic two-particle system in the covariant Hamiltonian formulation of quantum field theory”, TMF, 43:3 (1980), 330–342; Theoret. and Math. Phys., 43:3 (1980), 494–502

Citation in format AMSBIB
\Bibitem{SkaSol80}
\by N.~B.~Skachkov, I.~L.~Solovtsov
\paper Description of~the form factor of~a~relativistic two-particle system in~the covariant Hamiltonian formulation of~quantum field theory
\jour TMF
\yr 1980
\vol 43
\issue 3
\pages 330--342
\mathnet{http://mi.mathnet.ru/tmf3236}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=580412}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 43
\issue 3
\pages 494--502
\crossref{https://doi.org/10.1007/BF01029123}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980KW98800004}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3236
  • http://mi.mathnet.ru/eng/tmf/v43/i3/p330

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. B. Skachkov, I. L. Solovtsov, “Relativistic wave functions for a system of two spin $1/2$ quarks in a model with chromodynamic interaction”, Theoret. and Math. Phys., 54:2 (1983), 116–122  mathnet  crossref  isi
    2. E. A. Dei, V. N. Kapshai, N. B. Skachkov, “Exact solutions of a class of quasipotential equations for a superposition of one-boson exchange quasipotentials”, Theoret. and Math. Phys., 82:2 (1990), 130–138  mathnet  crossref  mathscinet  isi
    3. O. P. Solovtsova, Yu. D. Chernichenko, “The resummation $L$-factor in the relativistic quasipotential approach”, Theoret. and Math. Phys., 166:2 (2011), 194–209  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. Chernichenko Yu.D., “On the Solution of the Relativistic Quasipotential Equation for the Superposition of a Local Potential and of the Sum of Nonlocal Separable Quasi-Potentials”, Russian Physics Journal, 53:11 (2011), 1179–1195  crossref  isi
    5. Chernichenko Yu.D., “Form Factor of a Relativistic Two-Particle System Within the Relativistic Quasipotential Approach: Case of An Arbitrary Masses and a Scalar Current”, Phys. Atom. Nuclei, 77:2 (2014), 229–242  crossref  isi
    6. Chernichenko Yu.D., “On Form Factor of the Relativistic Two-Particle System in the Relativistic Quasipotential Approach”, Nonlinear Phenom. Complex Syst., 20:4 (2017), 394–403  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:194
    Full text:75
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020