RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1976, Volume 26, Number 3, Pages 419–424 (Mi tmf3242)  

This article is cited in 8 scientific papers (total in 8 papers)

Quantum solitons and their connection with fermion fields for the $(\sin\varphi)_2$

A. K. Pogrebkov, V. N. Sushko


Abstract: A consistent scheme of canonical quantization of the $(\sin\varphi)_2$ self-interaction is expounded; from the start it takes into account the existence of solitons in the corresponding classical dynamical system. A quantum soliton is correctly defined. The connection between the description of quantum solitons on the basis of the adopted quantization scheme and their description in terms of fermion fields is described.

Full text: PDF file (578 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1976, 26:3, 286–289

Bibliographic databases:

Document Type: Article
Received: 12.12.1975

Citation: A. K. Pogrebkov, V. N. Sushko, “Quantum solitons and their connection with fermion fields for the $(\sin\varphi)_2$”, TMF, 26:3 (1976), 419–424; Theoret. and Math. Phys., 26:3 (1976), 286–289

Citation in format AMSBIB
\Bibitem{PogSus76}
\by A.~K.~Pogrebkov, V.~N.~Sushko
\paper Quantum solitons and their connection with fermion fields for the $(\sin\varphi)_2$
\jour TMF
\yr 1976
\vol 26
\issue 3
\pages 419--424
\mathnet{http://mi.mathnet.ru/tmf3242}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=449271}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 26
\issue 3
\pages 286--289
\crossref{https://doi.org/10.1007/BF01032103}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3242
  • http://mi.mathnet.ru/eng/tmf/v26/i3/p419

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Volovich, “Quasicalssical expansion in quantum field theory and solitons”, Theoret. and Math. Phys., 29:1 (1976), 901–905  mathnet  crossref  mathscinet
    2. V. N. Sushko, “Fermionization of the $(\sin\varphi)_2$ interaction in a box”, Theoret. and Math. Phys., 37:2 (1978), 949–969  mathnet  crossref  mathscinet
    3. V. E. Korepin, “Direct calculation of the $S$ matrix in the massive thirring model”, Theoret. and Math. Phys., 41:2 (1979), 953–967  mathnet  crossref  isi
    4. A. I. Oksak, “Non-fock linear boson systems and their applications in two-dimensional models”, Theoret. and Math. Phys., 48:3 (1981), 759–773  mathnet  crossref  mathscinet  isi
    5. A. K. Pogrebkov, “Quantizing the KdV Equation”, Theoret. and Math. Phys., 129:2 (2001), 1586–1595  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. A. K. Pogrebkov, “Boson-fermion correspondence and quantum integrable and dispersionless models”, Russian Math. Surveys, 58:5 (2003), 1003–1037  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Pogrebkov A.K., “Hierarchy of quantum explicitly solvable and integrable models”, Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 201, 2006, 231–244  isi
    8. A. Yu. Orlov, “Hurwitz numbers and products of random matrices”, Theoret. and Math. Phys., 192:3 (2017), 1282–1323  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:241
    Full text:84
    References:23
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019