RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2002, Volume 131, Number 3, Pages 491–502 (Mi tmf342)  

This article is cited in 3 scientific papers (total in 3 papers)

On the Coordinate of a Singular Point of the Time Correlation Function for a Spin System on a Simple Hypercubic Lattice at High Temperatures

V. E. Zobova, M. A. Popovb

a L. V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences
b Krasnoyarsk State University

Abstract: Using the $d^{-1}$ expansion method ($d$ is the space dimension), we estimate the coordinate of the time-dependent autocorrelation function singular point on the imaginary time axis for the spin 1/2 Heisenberg model on a simple hypercubic lattice at high temperatures. We represent the coefficients of the time expansion (the spectral moments) for the autocorrelation function as the sums of the weighted lattice figures in which the trees constructed from the double bonds give the leading contributions with respect to $d^{-1}$ and the same trees with the built-in squares from six bonds or diagrams with the fourfold bonds give the contribution of the next-to-leading order. We find the corrections to the coordinate of the autocorrelation function singular point that are due to the latter contributions.

DOI: https://doi.org/10.4213/tmf342

Full text: PDF file (241 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2002, 131:3, 862–872

Bibliographic databases:

Received: 23.07.2001
Revised: 25.10.2001

Citation: V. E. Zobov, M. A. Popov, “On the Coordinate of a Singular Point of the Time Correlation Function for a Spin System on a Simple Hypercubic Lattice at High Temperatures”, TMF, 131:3 (2002), 491–502; Theoret. and Math. Phys., 131:3 (2002), 862–872

Citation in format AMSBIB
\Bibitem{ZobPop02}
\by V.~E.~Zobov, M.~A.~Popov
\paper On the Coordinate of a~Singular Point of the Time Correlation Function for a~Spin System on a~Simple Hypercubic Lattice at High Temperatures
\jour TMF
\yr 2002
\vol 131
\issue 3
\pages 491--502
\mathnet{http://mi.mathnet.ru/tmf342}
\crossref{https://doi.org/10.4213/tmf342}
\zmath{https://zbmath.org/?q=an:1031.82030}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 3
\pages 862--872
\crossref{https://doi.org/10.1023/A:1015935809388}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000176741900009}


Linking options:
  • http://mi.mathnet.ru/eng/tmf342
  • https://doi.org/10.4213/tmf342
  • http://mi.mathnet.ru/eng/tmf/v131/i3/p491

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. E. Zobov, M. A. Popov, “The Coordinate of the Singular Point of Generating Functions of Clusters in the High-Temperature Dynamics of Spin Lattice Systems with Axially Symmetric Interaction”, Theoret. and Math. Phys., 136:3 (2003), 1297–1311  mathnet  crossref  crossref  zmath  isi
    2. Zobov, VE, “On the coordinate of a singular point of time correlation functions for the system of nuclear magnetic moments of a crystal”, Journal of Experimental and Theoretical Physics, 97:1 (2003), 78  crossref  adsnasa  isi  scopus  scopus
    3. V. E. Zobov, M. M. Kucherov, “On the concentration dependence of wings of spectra of spin correlation functions of diluted Heisenberg paramagnets”, JETP Letters, 103:11 (2016), 687–691  mathnet  crossref  crossref  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:186
    Full text:98
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020