RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1977, Volume 33, Number 3, Pages 427–430 (Mi tmf3464)  

Unitary representations of the algebra of the general covariance group

A. B. Borisov


Abstract: New series of unitary representations of the algebra of general covariance group Diff $R^N$ are constructed, which are of interest for physical applications. Matrix representations for generators are obtained. The unitary representations of the group Diff $R^N$ are shown to possess nonlinear realizations of symmetry.

Full text: PDF file (444 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1977, 33:3, 1116–1118

Bibliographic databases:

Received: 26.11.1976

Citation: A. B. Borisov, “Unitary representations of the algebra of the general covariance group”, TMF, 33:3 (1977), 427–430; Theoret. and Math. Phys., 33:3 (1977), 1116–1118

Citation in format AMSBIB
\Bibitem{Bor77}
\by A.~B.~Borisov
\paper Unitary representations of the algebra of the general covariance group
\jour TMF
\yr 1977
\vol 33
\issue 3
\pages 427--430
\mathnet{http://mi.mathnet.ru/tmf3464}
\zmath{https://zbmath.org/?q=an:0377.22012}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 33
\issue 3
\pages 1116--1118
\crossref{https://doi.org/10.1007/BF01036997}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3464
  • http://mi.mathnet.ru/eng/tmf/v33/i3/p427

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:185
    Full text:65
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019