RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1976, Volume 29, Number 3, Pages 300–308 (Mi tmf3466)  

This article is cited in 18 scientific papers (total in 18 papers)

Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution

A. V. Razumov, O. A. Khrustalev


Abstract: Bogolyubov's method is used to quantize a boson field in the neighborhood of a two-particle classical solution in the case of a Hamiltonian with an arbitrary continuous symmetry group.

Full text: PDF file (1169 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1976, 29:3, 1084–1090

Bibliographic databases:

Received: 18.02.1976

Citation: A. V. Razumov, O. A. Khrustalev, “Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution”, TMF, 29:3 (1976), 300–308; Theoret. and Math. Phys., 29:3 (1976), 1084–1090

Citation in format AMSBIB
\Bibitem{RazKhr76}
\by A.~V.~Razumov, O.~A.~Khrustalev
\paper Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a~classical solution
\jour TMF
\yr 1976
\vol 29
\issue 3
\pages 300--308
\mathnet{http://mi.mathnet.ru/tmf3466}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=456096}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 3
\pages 1084--1090
\crossref{https://doi.org/10.1007/BF01028230}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3466
  • http://mi.mathnet.ru/eng/tmf/v29/i3/p300

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Razumov, A. Yu. Taranov, “Scattering on a nonrelativistic particle in strong-coupling theory”, Theoret. and Math. Phys., 35:3 (1978), 480–487  mathnet  crossref  mathscinet
    2. O. D. Timofeevskaya, “Allowance for relative group motion in charged scalar theory with two sources”, Theoret. and Math. Phys., 37:2 (1978), 969–974  mathnet  crossref  mathscinet
    3. O. D. Timofeevskaya, “Quantization in the neighborhood of a classical solution in a nonlinear $O(3)$-invariant theory”, Theoret. and Math. Phys., 37:3 (1978), 1051–1057  mathnet  crossref  mathscinet
    4. B. M. Barbashov, V. V. Nesterenko, A. M. Chervyakov, “Solitons in some geometrical field theories”, Theoret. and Math. Phys., 40:1 (1979), 572–581  mathnet  crossref  mathscinet  isi
    5. A. V. Shurgaya, “The method of collective variables and the generalized Hamiltonian formalism”, Theoret. and Math. Phys., 45:1 (1980), 873–879  mathnet  crossref  mathscinet  isi
    6. S. I. Zlatev, V. A. Matveev, G. A. Chechelashvili, “The problem of zero-frequency modes in the quantum theory of solitons”, Theoret. and Math. Phys., 50:3 (1982), 211–217  mathnet  crossref  mathscinet  isi
    7. V. G. Bornyakov, “Strong coupling method in a symmetric scalar theory with two sources”, Theoret. and Math. Phys., 51:2 (1982), 476–483  mathnet  crossref  isi
    8. V. G. Bornyakov, O. D. Timofeevskaya, “Bogolyubov transformation in the Lee model”, Theoret. and Math. Phys., 55:2 (1983), 451–458  mathnet  crossref  mathscinet  isi
    9. K. A. Sveshnikov, “Covariant perturbation theory in the neighborhood of a classical solution”, Theoret. and Math. Phys., 55:3 (1983), 553–568  mathnet  crossref  mathscinet  isi
    10. A. V. Shurgaya, “The method of collective variables in relativistic theory”, Theoret. and Math. Phys., 57:3 (1983), 1216–1225  mathnet  crossref  isi
    11. V. B. Tverskoi, “Scattering of solitons by quantum excitations”, Theoret. and Math. Phys., 59:2 (1984), 452–458  mathnet  crossref  mathscinet  isi
    12. A. E. Dorokhov, “Covariant quantization of the bag model”, Theoret. and Math. Phys., 61:1 (1984), 998–1012  mathnet  crossref  mathscinet  isi
    13. D. V. Meshcheryakov, “A generalization of the model with $\Phi^4$ interaction”, Theoret. and Math. Phys., 61:3 (1984), 1205–1211  mathnet  crossref  mathscinet  isi
    14. S. I. Zlatev, V. A. Matveev, “The problem of infrared divergences in soliton quantization”, Theoret. and Math. Phys., 62:1 (1985), 31–42  mathnet  crossref  isi
    15. V. B. Tverskoi, “Heisenberg fields in the neighborhood of a classical solution”, Theoret. and Math. Phys., 68:3 (1986), 866–873  mathnet  crossref  mathscinet  isi
    16. A. A. Torotadze, A. V. Shurgaya, “Two-dimensional model of the interaction of a nonrelativistic particle with scalar mesons in the strong-coupling limit”, Theoret. and Math. Phys., 76:2 (1988), 826–833  mathnet  crossref  isi
    17. Theoret. and Math. Phys., 93:3 (1992), 1345–1360  mathnet  crossref  isi
    18. K. A. Sveshnikov, “Nonclassical analogs of solitons in quantum field theory”, Theoret. and Math. Phys., 94:1 (1993), 39–47  mathnet  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:216
    Full text:70
    References:38
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019