RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1976, Volume 29, Number 3, Pages 309–322 (Mi tmf3467)  

This article is cited in 4 scientific papers (total in 4 papers)

Different quantizations and different classical limits of quantum theory

Yu. M. Shirokov


Abstract: For a canonical Hamiltonian system, a set of combined algebras $\mathscr B(U,W)$ analogous to the algebra $\mathscr B(1)$ of [1] is constructed. Each algebra gives a quantization prescription and a prescription for the transition from quantum theory to classical theory, and also a method for calculating the quantum corrections in powers of Ii to classical objects of different nature (observables, generators, equations of motion, etc). For each algebra, a set of quantities is found for which there exists a transition from the quantum to the classical theory (or vice versa). The set of quantizations reflects not only the different orderings of noncommuting operators but also different correspondences between the classical and quantum states for a given ordering. The set of transitions from the quantum to the classical theory reflects the ambiguity in the prescription “$\hbar\to 0$” associated with the fact that the constant $\hbar$ can be everywhere introduced (or eliminated) by a transformation of constants. The requirement adopted in the present paper of a passage to the limit of the quantum laws into classical laws is consistent. A methodological example is presented which shows that by an appropriate choice of the algebra $\mathscr B(U,W)$ one can obtain a good classical approximation to even the essentially quantum problem of the binding energy of the hydrogen atom.

Full text: PDF file (1877 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1976, 29:3, 1091–1100

Bibliographic databases:

Received: 12.02.1976

Citation: Yu. M. Shirokov, “Different quantizations and different classical limits of quantum theory”, TMF, 29:3 (1976), 309–322; Theoret. and Math. Phys., 29:3 (1976), 1091–1100

Citation in format AMSBIB
\Bibitem{Shi76}
\by Yu.~M.~Shirokov
\paper Different quantizations and different classical limits of quantum theory
\jour TMF
\yr 1976
\vol 29
\issue 3
\pages 309--322
\mathnet{http://mi.mathnet.ru/tmf3467}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=468853}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 3
\pages 1091--1100
\crossref{https://doi.org/10.1007/BF01028231}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3467
  • http://mi.mathnet.ru/eng/tmf/v29/i3/p309

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. M. Shirokov, “Perturbation theory with respect to Planck's constant”, Theoret. and Math. Phys., 31:3 (1977), 488–492  mathnet  crossref
    2. Yu. M. Shirokov, “Unified formalism for quantum and classical scattering theories”, Theoret. and Math. Phys., 38:3 (1979), 206–211  mathnet  crossref  mathscinet
    3. M. A. Antonets, “Classical limit of Weyl quantization”, Theoret. and Math. Phys., 38:3 (1979), 219–228  mathnet  crossref  mathscinet
    4. G. K. Tolokonnikov, “Algebras of observables of nearly canonical physical theories. II”, Theoret. and Math. Phys., 61:2 (1984), 1072–1077  mathnet  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:306
    Full text:113
    References:49
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019