RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2002, Volume 132, Number 1, Pages 90–96 (Mi tmf348)  

This article is cited in 47 scientific papers (total in 47 papers)

Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation

Yong Chen, Zhenya Yan, Hongqing Zhang

Dalian University of Technology

Abstract: The homogeneous balance method is extended and applied to a class of variable-coefficient “reaction–duffing” equations, and a Bäcklund transformation (BT) is obtained. Based on the BT, a nonlocal symmetry and several families of exact solutions of this equation are obtained, including soliton solutions that have important physical significance. The Fitzhugh–Nagumo and Chaffee–Infante equations are also considered as special cases.

Keywords: “reaction–duffing” equation, Bäcklund transformation, symmetry, exact solution, soliton solution

DOI: https://doi.org/10.4213/tmf348

Full text: PDF file (180 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2002, 132:1, 970–975

Bibliographic databases:

Received: 16.11.2001
Revised: 21.01.2002

Citation: Yong Chen, Zhenya Yan, Hongqing Zhang, “Exact Solutions for a Family of Variable-Coefficient “Reaction–Duffing” Equations via the Bäcklund Transformation”, TMF, 132:1 (2002), 90–96; Theoret. and Math. Phys., 132:1 (2002), 970–975

Citation in format AMSBIB
\Bibitem{YonZheHon02}
\by Yong Chen, Zhenya Yan, Hongqing Zhang
\paper Exact Solutions for a~Family of Variable-Coefficient ``Reaction--Duffing'' Equations via the B\"acklund Transformation
\jour TMF
\yr 2002
\vol 132
\issue 1
\pages 90--96
\mathnet{http://mi.mathnet.ru/tmf348}
\crossref{https://doi.org/10.4213/tmf348}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1956679}
\zmath{https://zbmath.org/?q=an:1129.35432}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 132
\issue 1
\pages 970--975
\crossref{https://doi.org/10.1023/A:1019663425564}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000177713500005}


Linking options:
  • http://mi.mathnet.ru/eng/tmf348
  • https://doi.org/10.4213/tmf348
  • http://mi.mathnet.ru/eng/tmf/v132/i1/p90

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Chen, Y, “Soliton-like solutions for a (2+1)-dimensional nonintegrable KdV equation and a variable-coefficient KdV equation”, Nuovo Cimento Della Societa Italiana Di Fisica B-General Physics Relativity Astronomy and Mathematical Physics and Methods, 118:8 (2003), 767  mathscinet  isi
    2. Li, B, “Nonlinear partial differential equations solved by projective Riccati equations ansatz”, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences, 58:9–10 (2003), 511  isi
    3. Chen, Y, “Generalized Riccati equation expansion method and its application to the Bogoyavlenskii's generalized breaking soliton equation”, Chinese Physics, 12:9 (2003), 940  crossref  adsnasa  isi  scopus  scopus
    4. Yong C, Qi W, “A series of new double periodic solutions to a (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation”, Chinese Physics, 13:11 (2004), 1796–1800  crossref  mathscinet  adsnasa  isi  scopus  scopus
    5. Chen Y, Wang Q, Li B, “Jacobi elliptic function rational expansion method with symbolic computation to construct new doubly-periodic solutions of nonlinear evolution equations”, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences, 59:9 (2004), 529–536  isi
    6. Chen Y, Wang Q, Li B, “A generalized algebraic method for constructing a series of explicit exact solutions of a (1+1)-dimensional dispersive long wave equation”, Communications in Theoretical Physics, 42:3 (2004), 329–334  crossref  mathscinet  zmath  isi
    7. Wang Q, Chen Y, Li B, et al, “New exact travelling wave solutions to hirota equation and (1+1)-dimensional dispersive long wave equation”, Communications in Theoretical Physics, 41:6 (2004), 821–828  crossref  mathscinet  zmath  isi
    8. Chen Y, Wang Q, Li BA, “A generalized method and general form solutions to the Whitham-Broer-Kaup equation”, Chaos Solitons & Fractals, 22:3 (2004), 675–682  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Chen Y, Li B, “New exact travelling wave solutions for generalized Zakharov-Kuzentsov equations using general projective Riccati equation method”, Communications in Theoretical Physics, 41:1 (2004), 1–6  crossref  mathscinet  zmath  isi
    10. Yomba E, “Construction of new soliton-like solutions of the (2+1) dimensional dispersive long wave equation”, Chaos Solitons & Fractals, 20:5 (2004), 1135–1139  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    11. Chen, Y, “General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order”, Chaos Solitons & Fractals, 19:4 (2004), 977  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    12. Chen Y, “General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation”, Nuovo Cimento Della Societa Italiana Di Fisica B-General Physics Relativity Astronomy and Mathematical Physics and Methods, 120:3 (2005), 295–302  crossref  mathscinet  isi  scopus  scopus
    13. Wang Q, Chen Y, Li B, et al, “New exact travelling wave solutions for the shallow long wave approximate equations”, Applied Mathematics and Computation, 160:1 (2005), 77–88  crossref  mathscinet  zmath  isi  scopus  scopus
    14. Chen Y, Wang Q, “A series of new soliton-like solutions and double-like periodic solutions of a (2+I)-dimensional dispersive long wave equation”, Chaos Solitons & Fractals, 23:3 (2005), 801–807  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. Wang Q, Chen Y, Zhang HQ, “A new Jacobi elliptic function rational expansion method and its application to (1+1)-dimensional dispersive long wave equation”, Chaos Solitons & Fractals, 23:2 (2005), 477–483  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    16. Chen, Y, “A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2+1)-dimensional dispersive long wave equation”, Applied Mathematics and Computation, 167:2 (2005), 919  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Yu, YX, “The extended Jacobi elliptic function method to solve a generalized Hirota-Satsuma coupled KdV equations”, Chaos Solitons & Fractals, 26:5 (2005), 1415  crossref  mathscinet  adsnasa  isi  scopus  scopus
    18. Wang, Q, “An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation”, Physics Letters A, 340:5–6 (2005), 411  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    19. Wang, Q, “A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation”, Chaos Solitons & Fractals, 25:5 (2005), 1019  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    20. Chen, Y, “Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations”, Chaos Solitons & Fractals, 26:1 (2005), 231  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    21. Zeng, X, “Backlund transformation and exact solutions for (2+1) -dimensional Boussinesq equation”, Acta Physica Sinica, 54:4 (2005), 1476  mathscinet  zmath  isi
    22. Chen, Y, “A new Riccati equation rational expansion method and its application”, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences, 60:1–2 (2005), 1  mathscinet  isi
    23. Chen, Y, “Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation”, Chaos Solitons & Fractals, 24:3 (2005), 745  crossref  mathscinet  zmath  adsnasa  isi  scopus
    24. Li, B, “Soliton-like solutions and periodic form solutions for two variable-co efficient evolution equations using symbolic computation”, Acta Mechanica, 174:1–2 (2005), 77  crossref  isi  scopus  scopus
    25. Zeng, X, “New soliton-like solutions to the (2+1)-dimensional dispersive long wave equations”, Acta Physica Sinica, 54:2 (2005), 504  mathscinet  zmath  isi
    26. Zhang, XL, “A new generalized Riccati equation rational expansion method to generalized Burgers-Fisher equation with nonlinear terms of any order”, Communications in Theoretical Physics, 46:5 (2006), 779  crossref  adsnasa  isi  scopus  scopus
    27. Chen, Y, “A unified rational expansion method to construct a series of explicit exact solutions to nonlinear evolution equations”, Applied Mathematics and Computation, 177:1 (2006), 396  crossref  mathscinet  zmath  isi  scopus  scopus
    28. Wang, Q, “A multiple Riccati equations rational expansion method and novel solutions of the Broer-Kaup-Kupershmidt system”, Chaos Solitons & Fractals, 30:1 (2006), 197  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    29. Zeng, X, “Symbolic computation and new families of exact solutions to the (2+1)-dimensional dispersive long-wave equations”, Chaos Solitons & Fractals, 29:5 (2006), 1115  crossref  mathscinet  zmath  adsnasa  isi  scopus
    30. Chen, Y, “A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations”, Applied Mathematics and Computation, 173:2 (2006), 1163  crossref  mathscinet  zmath  isi  scopus  scopus
    31. Li, B, “A generalized sub-equation expansion method and its application to the nonlinear Schrodinger equation in inhomogeneous optical fiber media”, International Journal of Modern Physics C, 18:7 (2007), 1187  crossref  adsnasa  isi  scopus  scopus
    32. Zhang, XL, “A new generalized Riccati equation rational expansion method to a class of nonlinear evolution equations with nonlinear terms of any order”, Applied Mathematics and Computation, 186:1 (2007), 705  crossref  mathscinet  zmath  isi  scopus  scopus
    33. Zheng, Y, “A new general algebraic method with symbolic computation to construct new exact analytical solution for a (2+1)-dimensional cubic nonlinear Schrodinger equation”, Chaos Solitons & Fractals, 32:3 (2007), 1101  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    34. Xiao Ya., Xue H., Zhang H., “An Extended Auxiliary Function Method and its Application in Mkdv Equation”, Math. Probl. Eng., 2013, 769187  crossref  mathscinet  zmath  isi  scopus
    35. Li Y., Zhao Yu., Yao Zh.-a., “Stochastic Exact Solutions of the Wick-Type Stochastic NLS Equation”, Appl. Math. Comput., 249 (2014), 209–221  crossref  mathscinet  zmath  isi  scopus  scopus
    36. Tian Shou-Fu, Ma Pan-Li, “On the Quasi-Periodic Wave Solutions and Asymptotic Analysis To a (3+1)-Dimensional Generalized Kadomtsev-Petviashvili Equation”, Commun. Theor. Phys., 62:2 (2014), 245–258  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    37. Kavitha L., Venkatesh M., Saravanan M., Dhamayanthi S., Gopi D., “Breather-Like Director Reorientations in a Nematic Liquid Crystal With Nonlocal Nonlinearity”, Wave Motion, 51:3 (2014), 476–488  crossref  mathscinet  isi  scopus  scopus
    38. Rui W., Zhao P., Zhang Yu., “Invariant Solutions and Conservation Laws of the (2+1)-Dimensional Boussinesq Equation”, Abstract Appl. Anal., 2014, 840405  crossref  mathscinet  isi  scopus  scopus
    39. Rui W., Zhang Yu., “Backlund Transformation and Quasi-Periodic Solutions For a Variable-Coefficient Integrable Equation”, Abstract Appl. Anal., 2014, 424059  crossref  mathscinet  isi  scopus  scopus
    40. Dai Ch.-Q., Xu Yu.-J., “Exact Solutions For a Wick-Type Stochastic Reaction Duffing Equation”, Appl. Math. Model., 39:23-24 (2015), 7420–7426  crossref  mathscinet  isi  scopus  scopus
    41. Xu M.-J., Tian Sh.-F., Tu J.-M., Ma P.-L., Zhang T.-T., “Quasi-Periodic Wave Solutions With Asymptotic Analysis To the Saweda-Kotera-Kadomtsev-Petviashvili Equation”, Eur. Phys. J. Plus, 130:8 (2015), 174  crossref  isi  elib  scopus  scopus
    42. Xu M.-J., Tian Sh.-F., Tu J.-M., Zhang T.-T., “Bäcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation”, Nonlinear Anal.-Real World Appl., 31 (2016), 388–408  crossref  mathscinet  zmath  isi  scopus
    43. Choi J.H., Lee S., Kim H., “Stochastic Effects for the Reaction-Duffing Equation with Wick-Type Product”, Adv. Math. Phys., 2016, 9062343  crossref  mathscinet  zmath  isi  scopus
    44. Abdullah, Seadawy A.R., Jun W., “Mathematical Methods and Solitary Wave Solutions of Three-Dimensional Zakharov-Kuznetsov-Burgers Equation in Dusty Plasma and Its Applications”, Results Phys., 7 (2017), 4269–4277  crossref  mathscinet  isi  scopus  scopus
    45. Iqbal M., Seadawy A.R., Lu D., “Construction of Solitary Wave Solutions to the Nonlinear Modified Kortewege-de Vries Dynamical Equation in Unmagnetized Plasma Via Mathematical Methods”, Mod. Phys. Lett. A, 33:32 (2018), 1850183  crossref  mathscinet  zmath  isi  scopus
    46. Iqbal M., Seadawy A.R., Lu D., “Dispersive Solitary Wave Solutions of Nonlinear Further Modified Korteweg-de Vries Dynamical Equation in An Unmagnetized Dusty Plasma”, Mod. Phys. Lett. A, 33:37 (2018), 1850217  crossref  mathscinet  zmath  isi  scopus
    47. Abdullah, Seadawy A.R., Wang J., “Three-Dimensional Nonlinear Extended Zakharov-Kuznetsov Dynamical Equation in a Magnetized Dusty Plasma Via Acoustic Solitary Wave Solutions”, Braz. J. Phys., 49:1 (2019), 67–78  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:518
    Full text:102
    References:19
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019