RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1974, Volume 18, Number 3, Pages 342–352 (Mi tmf3550)  

On boson representation of angular momentum. II

V. V. Mikhailov


Abstract: The states of a system of $N$ harmonic oscillators with fixed total number of quanta are decomposed with respect to bases of irreducible representations of $SU(2)$. The previously introduced basis [1] is a basis with the highest dimensionality in this decomposition. For the case of three harmonic oscillators, the operators and a discrete basis of a representation of the noncompact group $SU(1,1)$ are constructed. Bargmann's representation is considered for these states.

Full text: PDF file (1263 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1974, 18:3, 243–250

Received: 05.02.1973

Citation: V. V. Mikhailov, “On boson representation of angular momentum. II”, TMF, 18:3 (1974), 342–352; Theoret. and Math. Phys., 18:3 (1974), 243–250

Citation in format AMSBIB
\Bibitem{Mik74}
\by V.~V.~Mikhailov
\paper On~boson representation of angular momentum.~II
\jour TMF
\yr 1974
\vol 18
\issue 3
\pages 342--352
\mathnet{http://mi.mathnet.ru/tmf3550}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 18
\issue 3
\pages 243--250
\crossref{https://doi.org/10.1007/BF01035645}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3550
  • http://mi.mathnet.ru/eng/tmf/v18/i3/p342

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:205
    Full text:71
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021