RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1974, Volume 19, Number 3, Pages 344–363 (Mi tmf3593)  

This article is cited in 6 scientific papers (total in 7 papers)

Existence theorem for solutions of the Bogolyubov equations

Ya. G. Sinai, Yu. M. Sukhov


Abstract: An existence theorem is proved for a weak solution of Bogolyubov' s system of kinetic equations [1, 2] for small perturbations of the equilibrium Gibbs distribution in the case of onedimensional statistical mechanics.

Full text: PDF file (2200 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1974, 19:3, 560–573

Bibliographic databases:

Received: 30.07.1973

Citation: Ya. G. Sinai, Yu. M. Sukhov, “Existence theorem for solutions of the Bogolyubov equations”, TMF, 19:3 (1974), 344–363; Theoret. and Math. Phys., 19:3 (1974), 560–573

Citation in format AMSBIB
\Bibitem{SinSuk74}
\by Ya.~G.~Sinai, Yu.~M.~Sukhov
\paper Existence theorem for solutions of the Bogolyubov equations
\jour TMF
\yr 1974
\vol 19
\issue 3
\pages 344--363
\mathnet{http://mi.mathnet.ru/tmf3593}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=468961}
\zmath{https://zbmath.org/?q=an:0318.70011}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 19
\issue 3
\pages 560--573
\crossref{https://doi.org/10.1007/BF01035569}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3593
  • http://mi.mathnet.ru/eng/tmf/v19/i3/p344

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Vidybida, “Solutions of the BBGKY hierarchy. Classical statistics”, Theoret. and Math. Phys., 30:1 (1977), 29–35  mathnet  crossref  mathscinet  zmath
    2. A. K. Vidybida, “Local perturbations of translationally invariant solutions of the Bogolyubov (BBGKY) hierarchy”, Theoret. and Math. Phys., 34:1 (1978), 62–69  mathnet  crossref  mathscinet
    3. D. Ya. Petrina, “Mathematical description of the evolution of infinite systems of classical statistical physics. I. Locally perturbed one-dimensional systems”, Theoret. and Math. Phys., 38:2 (1979), 153–166  mathnet  crossref  mathscinet
    4. P. V. Malyshev, “Mathematical description of the evolution of an infinite classical system”, Theoret. and Math. Phys., 44:1 (1980), 603–611  mathnet  crossref  mathscinet  isi
    5. V. P. Belavkin, V. P. Maslov, S. È. Tariverdiev, “Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov–Feller equations”, Theoret. and Math. Phys., 49 (1981), 1043–1049  mathnet  crossref  mathscinet  isi
    6. D. Ya. Petrina, V. I. Gerasimenko, “A mathematical description of the evolution of the state of infinite systems of classical statistical mechanics”, Russian Math. Surveys, 38:5 (1983), 1–61  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. S. P. Novikov, L. A. Bunimovich, A. M. Vershik, B. M. Gurevich, E. I. Dinaburg, G. A. Margulis, V. I. Oseledets, S. A. Pirogov, K. M. Khanin, N. N. Chentsova, “Yakov Grigor'evich Sinai (on his sixtieth birthday)”, Russian Math. Surveys, 51:4 (1996), 765–778  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:437
    Full text:94
    References:51
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019