RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1980, Volume 44, Number 3, Pages 410–413 (Mi tmf3630)  

Symmetry groups of the Lagrangians of chiral fields with values on $S^2$

S. A. Vladimirov


Abstract: All the symmetry groups of the lagrangian of chiral field taking value in $S^2$ are constructed. It is shown that there are only seven different admissible point groups, five of which are infinite. The corresponding lagrangians are pointed out too. For three-dimensional space of the independent variables one of the groups acts transitively in the space of the solutions. This fact makes it possible to construct explicit (local) general solution if one of the partial solutions is given.

Full text: PDF file (486 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1980, 44:3, 829–831

Bibliographic databases:

Received: 08.05.1979

Citation: S. A. Vladimirov, “Symmetry groups of the Lagrangians of chiral fields with values on $S^2$”, TMF, 44:3 (1980), 410–413; Theoret. and Math. Phys., 44:3 (1980), 829–831

Citation in format AMSBIB
\Bibitem{Vla80}
\by S.~A.~Vladimirov
\paper Symmetry groups of~the Lagrangians of~chiral fields with values on~$S^2$
\jour TMF
\yr 1980
\vol 44
\issue 3
\pages 410--413
\mathnet{http://mi.mathnet.ru/tmf3630}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=596212}
\zmath{https://zbmath.org/?q=an:0449.58012}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 44
\issue 3
\pages 829--831
\crossref{https://doi.org/10.1007/BF01029051}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980LP32400013}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3630
  • http://mi.mathnet.ru/eng/tmf/v44/i3/p410

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:124
    Full text:56
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019