|
Nonlinear realization for symmetry group with spinor parameters
A. I. Pashnev
Abstract:
A nonlinear realization is proposed for a symmetry group with spinor parameters, the group including the Poincaré group as a subgroup. It is shown that in this case the field transformations contain not only the fields but also their derivatives. Adler's principle is proved for a Lagrangian that is invariant under the given symmetry group.
Full text:
PDF file (459 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1974, 20:1, 725–727
Bibliographic databases:
Received: 21.08.1973
Citation:
A. I. Pashnev, “Nonlinear realization for symmetry group with spinor parameters”, TMF, 20:1 (1974), 141–144; Theoret. and Math. Phys., 20:1 (1974), 725–727
Citation in format AMSBIB
\Bibitem{Pas74}
\by A.~I.~Pashnev
\paper Nonlinear realization for symmetry group with spinor parameters
\jour TMF
\yr 1974
\vol 20
\issue 1
\pages 141--144
\mathnet{http://mi.mathnet.ru/tmf3711}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=468750}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 20
\issue 1
\pages 725--727
\crossref{https://doi.org/10.1007/BF01038765}
Linking options:
http://mi.mathnet.ru/eng/tmf3711 http://mi.mathnet.ru/eng/tmf/v20/i1/p141
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 163 | Full text: | 71 | References: | 18 | First page: | 1 |
|