RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1973, Volume 16, Number 2, Pages 157–168 (Mi tmf3746)  

Asymptotic fields and the $S$ matrix in the lowest sector of the Lee model

L. A. Dadashev


Abstract: It is shown that in the lowest sector of the Lee model there exist asymptotic fields that allow a particle interpretation. The $S$ matrix calculated by means of these fields is equal to the $S$ matrix obtained by solving the Lipmann–Sehwinger equation [2].

Full text: PDF file (1330 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1973, 16:1, 743–750

Bibliographic databases:

Received: 05.08.1971
Revised: 17.03.1972

Citation: L. A. Dadashev, “Asymptotic fields and the $S$ matrix in the lowest sector of the Lee model”, TMF, 16:2 (1973), 157–168; Theoret. and Math. Phys., 16:1 (1973), 743–750

Citation in format AMSBIB
\Bibitem{Dad73}
\by L.~A.~Dadashev
\paper Asymptotic fields and the $S$ matrix in the lowest sector of the Lee model
\jour TMF
\yr 1973
\vol 16
\issue 2
\pages 157--168
\mathnet{http://mi.mathnet.ru/tmf3746}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=496017}
\transl
\jour Theoret. and Math. Phys.
\yr 1973
\vol 16
\issue 1
\pages 743--750
\crossref{https://doi.org/10.1007/BF01037125}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3746
  • http://mi.mathnet.ru/eng/tmf/v16/i2/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:193
    Full text:74
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020