RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1974, Volume 20, Number 3, Pages 364–380 (Mi tmf3847)  

This article is cited in 8 scientific papers (total in 8 papers)

Diagram technique for the Anderson model

A. F. Barabanov, K. A. Kikoin, L. A. Maksimov


Abstract: A temperature diagram technique is developed for calculating the Green's function of the operators of changing atomic configurations. Because Wick's theorem does not hold for the mean values of these operators, an expansion in semi-invariants is used Instead of the standard diagram technique. The formaIism is used to find the Green's function of the admixture $d$-electron in the Anderson model. It is shown that in the case when one of the admixture levels is near the Fermi surface summation of the Ieading diagrams in the logarithmic approximation is equivalent to decoupling of the two-time Green's functions and reduces to a renormalization of the admixture level.

Full text: PDF file (1816 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1974, 20:3, 881–892

Received: 31.08.1973

Citation: A. F. Barabanov, K. A. Kikoin, L. A. Maksimov, “Diagram technique for the Anderson model”, TMF, 20:3 (1974), 364–380; Theoret. and Math. Phys., 20:3 (1974), 881–892

Citation in format AMSBIB
\Bibitem{BarKikMak74}
\by A.~F.~Barabanov, K.~A.~Kikoin, L.~A.~Maksimov
\paper Diagram technique for the Anderson model
\jour TMF
\yr 1974
\vol 20
\issue 3
\pages 364--380
\mathnet{http://mi.mathnet.ru/tmf3847}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 20
\issue 3
\pages 881--892
\crossref{https://doi.org/10.1007/BF01040169}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3847
  • http://mi.mathnet.ru/eng/tmf/v20/i3/p364

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. F. Barabanov, K. A. Kikoin, L. A. Maksimov, “Graphical technique for the generalized Hubbard model”, Theoret. and Math. Phys., 25:1 (1975), 997–1003  mathnet  crossref
    2. M. F. Sarry, “Diagram technique for $s$$d$ model”, Theoret. and Math. Phys., 31:3 (1977), 514–523  mathnet  crossref  mathscinet
    3. V. M. Zharkov, “New functional representation in superspace for the Hubbard model”, Theoret. and Math. Phys., 60:3 (1984), 902–907  mathnet  crossref  mathscinet  isi
    4. M. I. Vladimir, V. A. Moskalenko, “Diagram technique for the Hubbard model”, Theoret. and Math. Phys., 82:3 (1990), 301–308  mathnet  crossref  isi
    5. I. G. Medvedev, “New diagram technique for the Anderson model”, Theoret. and Math. Phys., 109:2 (1996), 1460–1472  mathnet  crossref  crossref  zmath  isi
    6. V. A. Moskalenko, P. Entel, D. F. Digor, L. A. Dohotaru, R. Citro, “A diagram approach to the strong coupling in the single-impurity Anderson model”, Theoret. and Math. Phys., 155:3 (2008), 914–935  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. V. A. Moskalenko, P. Entel, L. A. Dohotaru, R. Citro, “Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential”, Theoret. and Math. Phys., 159:1 (2009), 551–560  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Val'kov V.V., Zlotnikov A.O., “Anomalous Properties and Coexistence of Antiferromagnetism and Superconductivity Near a Quantum Critical Point in Rare-Earth Intermetallides”, J. Exp. Theor. Phys., 116:5 (2013), 817–822  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:349
    Full text:145
    References:26
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020