RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1974, Volume 20, Number 3, Pages 413–425 (Mi tmf3850)  

This article is cited in 2 scientific papers (total in 2 papers)

Investigation of invariants of a many-particle system by the method of projection operators

R. M. Yul'met'yev


Abstract: The projection operator method is used to look for equations that determine invariants of stationary and equilibrium states of a statistical system. The method is based on Bogolyubov's fundamental idea advanced in 1945–1946 that a statistical process of high dimension can be reduced to a sequence of processes of lower dimension. A matrix representation of the Liouville operator with respect to four projection operators is used to split the Liouville equation into equations for the invariants in subspaces of lower dimension, in the derivation of the operator equation for the invariants of the equilibrium states of the system a concrete scheme of projection operators is proposed that employs another of Bogolyubov's ideas: that of successive allowance for a hierarchy of interactions in the system. From a known invariant – the equilibrium distribution function of the canonical ensemble – an integrodifferential equation is obtafned for the radial distribution function of particles in a homogeneous classical fluict, this generalizing Bogolyubov's well-known equation.

Full text: PDF file (1508 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1974, 20:3, 914–922

Bibliographic databases:

Received: 13.11.1972
Revised: 14.11.1973

Citation: R. M. Yul'met'yev, “Investigation of invariants of a many-particle system by the method of projection operators”, TMF, 20:3 (1974), 413–425; Theoret. and Math. Phys., 20:3 (1974), 914–922

Citation in format AMSBIB
\Bibitem{Yul74}
\by R.~M.~Yul'met'yev
\paper Investigation of invariants of a~many-particle system by the method of projection operators
\jour TMF
\yr 1974
\vol 20
\issue 3
\pages 413--425
\mathnet{http://mi.mathnet.ru/tmf3850}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=468984}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 20
\issue 3
\pages 914--922
\crossref{https://doi.org/10.1007/BF01040172}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3850
  • http://mi.mathnet.ru/eng/tmf/v20/i3/p413

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. M. Yul'met'yev, “Bogolyubov's abridged description of equilibrium systems and derivation of an equation for the radial distribution function in a liquid”, Theoret. and Math. Phys., 25:2 (1975), 1100–1108  mathnet  crossref  mathscinet
    2. N. R. Khusnutdinov, R. M. Yul'met'yev, “Spectrum of the non-Markov parameter for hydrodynamic systems”, Theoret. and Math. Phys., 105:2 (1995), 1426–1441  mathnet  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:232
    Full text:88
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020