RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1974, Volume 21, Number 1, Pages 49–59 (Mi tmf3856)  

This article is cited in 6 scientific papers (total in 6 papers)

Legendre transforms in the Ising model

A. N. Vasil'ev, R. A. Radzhabov

Leningrad State University

Abstract: The Legendre transforms of the logarithm of the partition function for the Ising model are considered. In the language of the first transform ($\Phi$) the magnetization is found by means of a variational principle: $\Phi$ plays the role of the varied functional whose stationarity points correspond to the desired values of the magnetization. Equations of motion are derived for $\Phi$, and their iterative solution is described (diagrams). The diagram expansion of $\Phi$ is equivalent to the high-temperature expansion of the logarithm of the partition function (free energy) in thetemperature – magnetizationvariables (instead of the usual temperature – external field variables). The possibility of using a diagram expansion for the first Legendre transform for the approximate calculation of the critical indices is discussed. The main advantage of the method is that it is equally applicable both above and below $T_c$.

Full text: PDF file (1415 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1974, 21:1, 963–970

Received: 21.11.1973

Citation: A. N. Vasil'ev, R. A. Radzhabov, “Legendre transforms in the Ising model”, TMF, 21:1 (1974), 49–59; Theoret. and Math. Phys., 21:1 (1974), 963–970

Citation in format AMSBIB
\Bibitem{VasRad74}
\by A.~N.~Vasil'ev, R.~A.~Radzhabov
\paper Legendre transforms in the Ising model
\jour TMF
\yr 1974
\vol 21
\issue 1
\pages 49--59
\mathnet{http://mi.mathnet.ru/tmf3856}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 21
\issue 1
\pages 963--970
\crossref{https://doi.org/10.1007/BF01035593}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3856
  • http://mi.mathnet.ru/eng/tmf/v21/i1/p49

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Vasil'ev, R. A. Radzhabov, “Analysis of the nonstar graphs of the Legendre transform in the ising model”, Theoret. and Math. Phys., 23:3 (1975), 575–579  mathnet  crossref
    2. N. M. Bogolyubov, V. F. Brattsev, A. N. Vasil'ev, A. L. Korzhenevskii, R. A. Radzhabov, “High-temperature expansions at an arbitrary magnetization in the ising model”, Theoret. and Math. Phys., 26:3 (1976), 230–237  mathnet  crossref
    3. N. M. Bogolyubov, “Convergence of Feynman diagram expansions in the Ising model”, Theoret. and Math. Phys., 30:1 (1977), 88–90  mathnet  crossref  mathscinet
    4. M. I. Vladimir, L. A. Dogotar', V. A. Moskalenko, “Ising model for spin glasses”, Theoret. and Math. Phys., 50:2 (1982), 177–185  mathnet  crossref  mathscinet  isi
    5. G. V. Matvienko, “Critical behavior of the ferromagnetic ising chain with interaction $J_{ij}=|i-j|^{-2}$”, Theoret. and Math. Phys., 63:3 (1985), 635–640  mathnet  crossref  isi
    6. G. V. Matvienko, “Critical behavior of a plane Ising antiferromagnet with two-dimensional dipole interaction”, Theoret. and Math. Phys., 69:2 (1986), 1156–1163  mathnet  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:317
    Full text:118
    References:28
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020