RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1974, Volume 21, Number 1, Pages 86–102 (Mi tmf3859)  

This article is cited in 10 scientific papers (total in 10 papers)

Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet I. Antiferromagnetic phase in the generalized Hartree-Fock approximation

V. I. Lymar', Yu. G. Rudoi


Abstract: A study is made of a matrix Green's function constructed with Pauli operators and describing the transverse components of the dynamic susceptibility tensor Of a two-sublattice anisotropic Heisenberg antiferromagnet with spin 1/2 in a longitudinal magnetic field. In the generalized Hartree–Fook approximation (without allowance for damping) the renormalized magnon spectrum and the one-particle (normal and anomalous) correlation functions in the antiferromagnetic phase are found. The cases of easy-plane and easy-axis anisotropy are studied in detail; in the second case the phase boundary at low temperatures and near the N6el point is calculated.

Full text: PDF file (1777 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1974, 21:1, 990–1002

Received: 23.01.1974

Citation: V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet I. Antiferromagnetic phase in the generalized Hartree-Fock approximation”, TMF, 21:1 (1974), 86–102; Theoret. and Math. Phys., 21:1 (1974), 990–1002

Citation in format AMSBIB
\Bibitem{LymRud74}
\by V.~I.~Lymar', Yu.~G.~Rudoi
\paper Spectrum and correlation functions of an anisotropic Heisenberg antiferromagnet
I. Antiferromagnetic phase in the generalized Hartree-Fock approximation
\jour TMF
\yr 1974
\vol 21
\issue 1
\pages 86--102
\mathnet{http://mi.mathnet.ru/tmf3859}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 21
\issue 1
\pages 990--1002
\crossref{https://doi.org/10.1007/BF01035596}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3859
  • http://mi.mathnet.ru/eng/tmf/v21/i1/p86

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet. II. Paramagnetic phase in the generalized Hartree–Fock approximation”, Theoret. and Math. Phys., 24:3 (1975), 912–917  mathnet  crossref
    2. Yu. G. Rudoi, Yu. A. Tserkovnikov, “One-particle green s function in the anisotropic Heisenberg model”, Theoret. and Math. Phys., 25:2 (1975), 1073–1084  mathnet  crossref
    3. V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of anisotropic Heisenberg antiferromagnet III spin-flop phase in the generalized Hartree–Fock approximation”, Theoret. and Math. Phys., 30:2 (1977), 159–168  mathnet  crossref
    4. V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet. IV. Model of easy plane type with allowance for Dzyaloshinskii interaction”, Theoret. and Math. Phys., 34:2 (1978), 137–147  mathnet  crossref
    5. V. G. Morozov, A. N. Mukhai, “Hydrodynamic spectrum of an antiferromagnet at low temperatures”, Theoret. and Math. Phys., 36:1 (1978), 624–634  mathnet  crossref  mathscinet
    6. V. V. Val'kov, S. G. Ovchinnikov, “Hubbard operators and spin-wave theory of Heisenberg magnets with arbitrary spin”, Theoret. and Math. Phys., 50:3 (1982), 306–313  mathnet  crossref  mathscinet  isi
    7. A. L. Kuzemsky, D. Marvakov, “Excitation spectrum of Heisenberg antiferromagnet at finite temperatures”, Theoret. and Math. Phys., 83:1 (1990), 441–448  mathnet  crossref  isi
    8. A. A. Isaev, M. Yu. Kovalevsky, S. V. Peletminskii, “Hamiltonian approach to the theory of antiferromagnetic systems”, Theoret. and Math. Phys., 95:1 (1993), 404–415  mathnet  crossref  mathscinet  zmath
    9. Yu. G. Rudoy, “The Bogoliubov–Tyablikov Green's function method in the quantum theory of magnetism”, Theoret. and Math. Phys., 168:3 (2011), 1318–1329  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    10. JETP Letters, 100:12 (2014), 780–785  mathnet  crossref  crossref  isi  elib  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:318
    Full text:111
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020